Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(35): 23477-23490, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37646145

RESUMO

The electronic structure of a transition metal atom allows it to act as a catalytic active site by providing lower energy alternative pathways in chemical transformations. We have identified and kinetically characterized three such pathways in the title reaction. One is an adiabatic pathway that occurs on a single potential energy surface described within the Born-Oppenheimer approximation. A second pathway opens microseconds into the reaction as a portion of the reacting population competitively transitions from triplet to singlet multiplicity to circumvent energetic barriers on the triplet surface. These pathways are single- and two-state reactive (SSR and TSR) where the Co+ cation mediates an oxidative addition/reductive elimination sequence of the CH3CHO molecule. The third observed reaction pathway is the aldehyde hydrogen tunneling through an Eyring barrier to form high-spin products. First-order rate constants for the adiabatic and nonadiabatic energy lowered pathways, and the hydrogen tunneling pathway, are each measured using the single photon initiated dissociative rearrangement reaction (SPIDRR) experimental technique. We believe that this is the first experimental study where such disparate dynamic features (SSR, TSR, and H-tunneling) are disentangled in a system's chemistry, attributing specific rate constant values to each effect and quantifying the various competitions. Moreover, multi-reference CASSCF/CASPT2 calculations indicate that structures with covalent Co-H bonds are present exclusively along the excited singlet surface. This phenomenon significantly reduces these structures' energy relative to their triplet counterparts, thus enabling the surface crossing and spin inversion that cause the observed two-state reactivity.

2.
Phys Chem Chem Phys ; 24(4): 2300-2308, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35015007

RESUMO

For several decades, the influence of Two State Reactivity (TSR) has been implicated in a host of reactions, but has lacked a stand-alone, definitive experimental kinetic signature identifying its occurrence. Here, we demonstrate that the measurement of a temporally dependent product branching ratio is indicative of spin inversion and is a kinetic signature of TSR. This is caused by products exiting different hypersurfaces with different rates and relative exothermicities. The composite measurement of product intensities with the same mass but with different multiplicities yield biexponential temporal dependences with the sampled product ratio changing in time. These measurements are made using the single photon initiated dissociative rearrangement reaction (SPIDRR) technique which identifies TSR but further determines the kinetic parameters for reaction along the original ground electronic surface in competition with spin inversion and its consequent TSR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...