Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Clin Med Phys ; 21(10): 170-178, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32996669

RESUMO

PURPOSE: To investigate the impact of respiratory motion in the treatment margins for lung SBRT frameless treatments and to validate our treatment margins using 4D CBCT data analysis. METHODS: Two hundred and twenty nine fractions with early stage NSCLC were retrospectively analyzed. All patients were treated in frameless and free breathing conditions. The treatment margins were calculated according to van Herk equation in Mid-Ventilation. For each fraction, three 4D CBCT scans, pre- and postcorrection, and posttreatment, were acquired to assess target baseline shift, target localization accuracy and intra-fraction motion errors. A bootstrap analysis was performed to assess the minimum number of patients required to define treatment margins. RESULTS: The retrospectively calculated target-baseline shift, target localization accuracy and intra-fraction motion errors agreed with the literature. The best tailored margins to our cohort of patients were retrospectively computed and resulted in agreement with already published data. The bootstrap analysis showed that fifteen patients were enough to assess treatment margins. CONCLUSIONS: The treatment margins applied to our patient's cohort resulted in good agreement with the retrospectively calculated margins based on 4D CBCT data. Moreover, the bootstrap analysis revealed to be a promising method to verify the reliability of the applied treatment margins for safe lung SBRT delivery.


Assuntos
Neoplasias Pulmonares , Radiocirurgia , Tomografia Computadorizada de Feixe Cônico Espiral , Tomografia Computadorizada de Feixe Cônico , Tomografia Computadorizada Quadridimensional , Humanos , Pulmão , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/cirurgia , Movimento , Planejamento da Radioterapia Assistida por Computador , Reprodutibilidade dos Testes , Respiração , Estudos Retrospectivos
2.
J Appl Clin Med Phys ; 17(6): 97-106, 2016 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-27929485

RESUMO

The study was to describe and to compare the performance of 3D and 4D CBCT imaging modalities by measuring and analyzing the delivered dose and the image quality. The 3D (Chest) and 4D (Symmetry) CBCT Elekta XVI lung IGRT protocols were analyzed. Dose profiles were measured with TLDs inside a dedicated phantom. The dosimetric indicator cone-beam dose index (CBDI) was evaluated. The image quality analysis was performed by assessing the contrast transfer function (CTF), the noise power spectrum (NPS) and the noise-equivalent quanta (NEQ). Artifacts were also evaluated by simulating irregular breathing variations. The two imaging modalities showed different dose distributions within the phantom. At the center, the 3D CBCT delivered twice the dose of the 4D CBCT. The CTF was strongly reduced by motion compared to static conditions, resulting in a CTF reduction of 85% for the 3D CBCT and 65% for the 4D CBCT. The amplitude of the NPS was two times higher for the 4D CBCT than for the 3D CBCT. In the presence of motion, the NEQ of the 4D CBCT was 50% higher than the 3D CBCT. In the presence of breathing irregularities, the 4D CBCT protocol was mainly affected by view-aliasing artifacts, which were typically cone-beam artifacts, while the 3D CBCT protocol was mainly affected by duplication artifacts. The results showed that the 4D CBCT ensures a reasonable dose and better image quality when mov-ing targets are involved compared to 3D CBCT. Therefore, 4D CBCT is a reliable imaging modality for lung free-breathing radiation therapy.


Assuntos
Algoritmos , Tomografia Computadorizada de Feixe Cônico/métodos , Tomografia Computadorizada Quadridimensional/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Imagens de Fantasmas , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/normas , Neoplasias Pulmonares/radioterapia , Movimento (Física) , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos , Radioterapia de Intensidade Modulada/métodos , Respiração , Razão Sinal-Ruído
3.
Radiother Oncol ; 119(3): 438-43, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27059862

RESUMO

BACKGROUND AND PURPOSE: To investigate the impact of Toshiba phase- and amplitude-sorting algorithms on the margin strategies for free-breathing lung radiotherapy treatments in the presence of breathing variations. MATERIAL AND METHODS: 4D CT of a sphere inside a dynamic thorax phantom was acquired. The 4D CT was reconstructed according to the phase- and amplitude-sorting algorithms. The phantom was moved by reproducing amplitude, frequency, and a mix of amplitude and frequency variations. Artefact analysis was performed for Mid-Ventilation and ITV-based strategies on the images reconstructed by phase- and amplitude-sorting algorithms. The target volume deviation was assessed by comparing the target volume acquired during irregular motion to the volume acquired during regular motion. RESULTS: The amplitude-sorting algorithm shows reduced artefacts for only amplitude variations while the phase-sorting algorithm for only frequency variations. For amplitude and frequency variations, both algorithms perform similarly. Most of the artefacts are blurring and incomplete structures. We found larger artefacts and volume differences for the Mid-Ventilation with respect to the ITV strategy, resulting in a higher relative difference of the surface distortion value which ranges between maximum 14.6% and minimum 4.1%. CONCLUSIONS: The amplitude- is superior to the phase-sorting algorithm in the reduction of motion artefacts for amplitude variations while phase-sorting for frequency variations. A proper choice of 4D CT sorting algorithm is important in order to reduce motion artefacts, especially if Mid-Ventilation strategy is used.


Assuntos
Tomografia Computadorizada Quadridimensional/métodos , Neoplasias Pulmonares/radioterapia , Algoritmos , Artefatos , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Movimento (Física) , Imagens de Fantasmas , Respiração , Carga Tumoral
4.
Phys Med ; 29(4): 333-40, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22617761

RESUMO

PURPOSE: To determine the usefulness of abdominal compression in lung stereotactic body radiation therapy (SBRT) depending on lobe tumor location. MATERIALS AND METHODS: Twenty-seven non-small cell lung cancer patients were immobilized in the Stereotactic Body Frame™ (Elekta). Eighteen tumors were located in an upper lobe, one in the middle lobe and nine in a lower lobe (one patient had two lesions). All patients underwent two four-dimensional computed tomography (4DCT) scans, with and without abdominal compression. Three-dimensional tumor motion amplitude was determined using manual landmark annotation. We also determined the internal target volume (ITV) and the influence of abdominal compression on lung dose-volume histograms. RESULTS: The mean reduction of tumor motion amplitude was 3.5 mm (p = 0.009) for lower lobe tumors and 0.8 mm (p = 0.026) for upper/middle lobe locations. Compression increased tumor motion in 5 cases. Mean ITV reduction was 3.6 cm(3) (p = 0.039) for lower lobe and 0.2 cm(3) (p = 0.048) for upper/middle lobe lesions. Dosimetric gain of the compression for lung sparing was not clinically relevant. CONCLUSIONS: The most significant impact of abdominal compression was obtained in patients with lower lobe tumors. However, minor or negative effects of compression were reported for other patients and lung sparing was not substantially improved. At our institute, patients with upper or middle lobe lesions are now systematically treated without compression and the usefulness of compression for lower lobe tumors is evaluated on an individual basis.


Assuntos
Abdome , Tomografia Computadorizada Quadridimensional , Pulmão/diagnóstico por imagem , Pulmão/cirurgia , Fenômenos Mecânicos , Radiocirurgia/métodos , Artefatos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/cirurgia , Radiometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...