Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38944040

RESUMO

We describe a next-generation Drosophila protein interaction map-"DPIM2"-established from affinity purification-mass spectrometry of 5,805 baits, covering the largest fraction of the Drosophila proteome. The network contains 32,668 interactions among 3,644 proteins, organized into 632 clusters representing putative functional modules. Our analysis expands the pool of known protein interactions in Drosophila, provides annotation for poorly studied genes, and postulates previously undescribed protein interaction relationships. The predictive power and functional relevance of this network are probed through the lens of the Notch signaling pathway, and we find that newly identified members of complexes that include known Notch modifiers can also modulate Notch signaling. DPIM2 allows direct comparisons with a recently published human protein interaction network, defining the existence of functional interactions conserved across species. Thus, DPIM2 defines a valuable resource for predicting protein co-complex memberships and functional associations as well as generates functional hypotheses regarding specific protein interactions.

2.
J Control Release ; 336: 252-261, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34175365

RESUMO

Current therapeutic treatments improving the impaired transportation of oxygen in acute respiratory distress syndrome (ARDS) have been found to be relevant and beneficial for the therapeutic treatment of COVID-19 patients suffering from severe respiratory complications. Hence, we report the preclinical and the preliminary results of the Phase I/II clinical trial of LEAF-4L6715, a liposomal nanocarrier encapsulating the kosmotropic agent trans-crocetin (TC), which, once injected, enhance the oxygenation of vascular tissue and therefore has the potential to improve the clinical outcomes of ARDS and COVID-19 in severely impacted patients. We demonstrated that the liposomal formulation enabled to increase from 30 min to 48 h the reoxygenation properties of free TCs in vitro in endothelial cells, but also to improve the half-life of TC by 6-fold in healthy mice. Furthermore, we identified 25 mg/kg as the maximum tolerated dose in mice. This determined concentration led to the validation of the therapeutic efficacy of LEAF-4 L6715 in a sepsis mouse model. Finally, we report the preliminary outcomes of an open-label multicenter Phase I/II clinical trial (EudraCT 2020-001393-30; NCT04378920), which was aimed to define the appropriate schedule and dosage of LEAF-4L6715 and to confirm its tolerability profile and preliminary clinical activity in COVID-19 patients treated in intensive care unit.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Animais , Carotenoides , Células Endoteliais , Humanos , Camundongos , Respiração Artificial , Síndrome do Desconforto Respiratório/tratamento farmacológico , SARS-CoV-2 , Vitamina A/análogos & derivados
3.
Genetics ; 215(3): 747-766, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32345615

RESUMO

Amyotrophic lateral sclerosis (ALS), commonly known as Lou Gehrig's disease, is a devastating neurodegenerative disorder lacking effective treatments. ALS pathology is linked to mutations in >20 different genes indicating a complex underlying genetic architecture that is effectively unknown. Here, in an attempt to identify genes and pathways for potential therapeutic intervention and explore the genetic circuitry underlying Drosophila models of ALS, we carry out two independent genome-wide screens for modifiers of degenerative phenotypes associated with the expression of transgenic constructs carrying familial ALS-causing alleles of FUS (hFUSR521C) and TDP-43 (hTDP-43M337V). We uncover a complex array of genes affecting either or both of the two strains, and investigate their activities in additional ALS models. Our studies indicate the pathway that governs phospholipase D activity as a major modifier of ALS-related phenotypes, a notion supported by data we generated in mice and others collected in humans.


Assuntos
Esclerose Lateral Amiotrófica/genética , Genes Modificadores , Fosfolipase D/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Drosophila melanogaster , Humanos , Mutação , Fosfolipase D/genética , Proteína FUS de Ligação a RNA/genética , Transgenes
4.
Cancer Discov ; 7(11): 1336-1353, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28974511

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy of thymocytes. Using a transgenic screen in zebrafish, thymocyte selection-associated high mobility group box protein (TOX) was uncovered as a collaborating oncogenic driver that accelerated T-ALL onset by expanding the initiating pool of transformed clones and elevating genomic instability. TOX is highly expressed in a majority of human T-ALL and is required for proliferation and continued xenograft growth in mice. Using a wide array of functional analyses, we uncovered that TOX binds directly to KU70/80 and suppresses recruitment of this complex to DNA breaks to inhibit nonhomologous end joining (NHEJ) repair. Impaired NHEJ is well known to cause genomic instability, including development of T-cell malignancies in KU70- and KU80-deficient mice. Collectively, our work has uncovered important roles for TOX in regulating NHEJ by elevating genomic instability during leukemia initiation and sustaining leukemic cell proliferation following transformation.Significance: TOX is an HMG box-containing protein that has important roles in T-ALL initiation and maintenance. TOX inhibits the recruitment of KU70/KU80 to DNA breaks, thereby inhibiting NHEJ repair. Thus, TOX is likely a dominant oncogenic driver in a large fraction of human T-ALL and enhances genomic instability. Cancer Discov; 7(11); 1336-53. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 1201.


Assuntos
Reparo do DNA por Junção de Extremidades/genética , Instabilidade Genômica/genética , Proteínas HMGB/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Fatores de Transcrição/genética , Animais , Animais Geneticamente Modificados , Proliferação de Células/genética , Humanos , Autoantígeno Ku/genética , Camundongos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Linfócitos T/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra/genética
5.
Blood ; 128(9): 1181-92, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27365423

RESUMO

The maintenance of hematopoietic stem cells (HSCs) during ex vivo culture is an important prerequisite for their therapeutic manipulation. However, despite intense research, culture conditions for robust maintenance of HSCs are still missing. Cultured HSCs are quickly lost, preventing their improved analysis and manipulation. Identification of novel factors supporting HSC ex vivo maintenance is therefore necessary. Coculture with the AFT024 stroma cell line is capable of maintaining HSCs ex vivo long-term, but the responsible molecular players remain unknown. Here, we use continuous long-term single-cell observation to identify the HSC behavioral signature under supportive or nonsupportive stroma cocultures. We report early HSC survival as a major characteristic of HSC-maintaining conditions. Behavioral screening after manipulation of candidate molecules revealed that the extracellular matrix protein dermatopontin (Dpt) is involved in HSC maintenance. DPT knockdown in supportive stroma impaired HSC survival, whereas ectopic expression of the Dpt gene or protein in nonsupportive conditions restored HSC survival. Supplementing defined stroma- and serum-free culture conditions with recombinant DPT protein improved HSC clonogenicity. These findings illustrate a previously uncharacterized role of Dpt in maintaining HSCs ex vivo.


Assuntos
Proteoglicanas de Sulfatos de Condroitina/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Animais , Técnicas de Cultura de Células , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Proteoglicanas de Sulfatos de Condroitina/genética , Proteoglicanas de Sulfatos de Condroitina/farmacologia , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/farmacologia , Células-Tronco Hematopoéticas/citologia , Masculino , Camundongos , Camundongos Transgênicos , Células Estromais/citologia , Células Estromais/metabolismo , Fatores de Tempo
6.
Hum Gene Ther Methods ; 26(4): 107-22, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26107288

RESUMO

Parkinson's disease is one of the most common neurodegenerative disorders characterized by cell death of dopaminergic neurons in the substantia nigra. Recent research has focused on cellular replacement through lineage reprogramming as a potential therapeutic strategy. This study sought to use genetics to define somatic cell types in vivo amenable to reprogramming. To stimulate in vivo reprogramming to dopaminergic neurons, we generated a Rosa26 knock-in mouse line conditionally overexpressing Mash1, Lmx1a, and Nurr1. These proteins are characterized by their role in neuronal commitment and development of midbrain dopaminergic neurons and have previously been shown to convert fibroblasts to dopaminergic neurons in vitro. We show that a tricistronic construct containing these transcription factors can reprogram astrocytes and fibroblasts in vitro. However, cassette overexpression triggered cell death in vivo, in part through endoplasmic reticulum stress, while we also detected "uncleaved" forms of the polyprotein, suggesting poor "cleavage" efficiency of the 2A peptides. Based on our results, the cassette overexpression induced apoptosis and precluded reprogramming in our mouse model. Therefore, we suggest that alternatives must be explored to balance construct design with efficacious reprogramming. It is evident that there are still biological obstacles to overcome for in vivo reprogramming to dopaminergic neurons.


Assuntos
Reprogramação Celular/genética , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/metabolismo , Expressão Gênica , Vetores Genéticos/genética , Transgenes , Animais , Astrócitos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Morte Celular/genética , Linhagem Celular , Células-Tronco Embrionárias , Feminino , Fibroblastos , Ordem dos Genes , Recombinação Homóloga , Proteínas com Homeodomínio LIM/genética , Lentivirus/genética , Masculino , Camundongos , Camundongos Transgênicos , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Fatores de Transcrição/genética , Transdução Genética , Resposta a Proteínas não Dobradas/genética
7.
PLoS One ; 8(10): e76155, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24155890

RESUMO

STAT5 controls essential cellular functions and is encoded by two genes, Stat5a and Stat5b. To provide insight to the mechanisms linking hematologic malignancy to STAT5 activation/regulation of target genes, we identified STAT5 target genes and focused on Dpf3 gene, which encodes for an epigenetic factor. Dpf3 expression was induced upon IL-3 stimulation in Ba/F3 cells, while strong binding of both STAT5a and STAT5b was detected in its promoter. Reduced expression of Dpf3 was detected in Ba/F3 cells with Stat5a and Stat5b knock-down, suggesting that this gene is positively regulated by STAT5, upon IL-3 stimulation. Furthermore, this gene was significantly up-regulated in CLL patients, where DPF3 gene/protein up-regulation and strong STAT5 binding to the DPF3 promoter, correlated with increased STAT5 activation, mainly in non-malignant myeloid cells (granulocytes). Our findings provide insights in the STAT5 dependent transcriptional regulation of Dpf3, and demonstrate for the first time increased STAT5 activation in granulocytes of CLL patients. Novel routes of investigation are opened to facilitate the understanding of the role of STAT5 activation in the communication between non-malignant myeloid and malignant B-cells, and the functions of STAT5 target genes networks in CLL biology.


Assuntos
Proteínas de Ligação a DNA/genética , Leucemia Linfocítica Crônica de Células B/genética , Fator de Transcrição STAT5/metabolismo , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/metabolismo , Animais , Sequência de Bases , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Biblioteca Gênica , Genoma Humano/genética , Células HEK293 , Humanos , Interleucina-3/farmacologia , Camundongos , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
8.
Appl Microbiol Biotechnol ; 97(12): 5259-74, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23546423

RESUMO

AtoSC two-component system (TCS) upregulates the high-molecular weight poly-(R)-3-hydroxybutyrate (PHB) biosynthesis in recombinant phaCAB (+) Escherichia coli strains, with the Cupriavidus necator phaCAB operon. We report here that AtoSC upregulates also the copolymer P(3HB-co-3HV) biosynthesis in phaCAB (+) E. coli. Acetoacetate-induced AtoSC maximized P(3HB-co-3HV) to 1.27 g/l with a 3HV fraction of 25.5 % wt. and biopolymer content of 75 % w/w in a time-dependent process. The atoSC locus deletion in the ∆atoSC strains resulted in 4.5-fold P(3HB-co-3HV) reduction, while the 3HV fraction of the copolymer was restricted to only 6.4 % wt. The ∆atoSC phenotype was restored by extrachromosomal introduction of AtoSC. Deletion of the atoDAEB operon triggered a significant decrease in P(3HB-co-3HV) synthesis and 3HV content in ∆atoDAEB strains. However, the acetoacetate-induced AtoSC in those strains increased P(3HB-co-3HV) to 0.8 g/l with 21 % 3HV, while AtoC or AtoS expression increased P(3HB-co-3HV) synthesis 3.6- or 2.4-fold, respectively, upon acetoacetate. Complementation of the ∆atoDAEB phenotype was achieved by the extrachromosomal introduction of the atoSCDAEB regulon. Individual inhibition of ß-oxidation and mainly fatty acid biosynthesis pathways by acrylic acid or cerulenin, respectively, reduced P(3HB-co-3HV) biosynthesis. Under those conditions, introduction of atoSC or atoSCDAEB regulon was capable of upregulating biopolymer accumulation. Concurrent inhibition of both the fatty acid metabolic pathways eliminated P(3HB-co-3HV) production. P(3HB-co-3HV) upregulation in phaCAB (+) E. coli by AtoSC signaling through atoDAEB operon and its participation in the fatty acids metabolism interplay provide additional perceptions of AtoSC critical involvement in E. coli regulatory processes towards biotechnologically improved polyhydroxyalkanoates biosynthesis.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Poliésteres/metabolismo , Regulon , Acetoacetatos/metabolismo , Cupriavidus necator/genética , Deleção de Genes , Teste de Complementação Genética , Engenharia Metabólica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ativação Transcricional , Regulação para Cima
9.
Eur J Pharm Sci ; 47(1): 84-96, 2012 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-22634222

RESUMO

Verapamil, diltiazem and nifedipine are Ca(2+)-channel blockers used in cardiovascular diseases. We report here that the Escherichia coli AtoSC signaling is inhibited by those blockers. AtoSC two-component system plays a pivotal role in sophisticated signaling networks in E. coli regulating processes implicated in bacterial homeostasis and pathogenicity. The Ca(2+)-channel blockers abrogated the in vitro full-length AtoS kinase autophosphorylation. However, they demonstrated no effect on the AtoS cytoplasmic form autophosphorylation. AtoC protected AtoS from verapamil or diltiazem but not from nifedipine, when the two constituents formed complex. The blockers did not affect the AtoS≈P to AtoC phosphotransfer. The blockers-mediated AtoSC inhibition was verified in vivo on the atoDAEB expression, which was inhibited only in AtoSC-expressing bacteria upon acetoacetate. The AtoS and AtoC protein or their genes transcription levels were unaffected by the blockers. Blockers demonstrated differential effects in the regulation of both the cytosolic- and most potently the membrane-bound-cPHB. Extracellular Ca(2+) counteracted the verapamil-mediated effect on cPHB only in atoSC(+) cells. Extracellular Ca(2+) reversed the diltiazem-mediated cPHB decreases in cells of both genetic backgrounds, yet a Ca(2+)-concentration dependent reversion was observed only in the AtoSC-regulated cPHB. Nifedipine caused a more pronounced cPHB down-regulation that was not reversed by extracellular Ca(2+). The AtoSC signaling inhibition by Ca(2+)-channel blockers used for human treatment, and their differential effects on cPHB-formed Ca(2+)-channels, signify their implications in bacterial-host interactions through the two-component signaling and could stimulate the design of Ca(2+)-channels blockers derivatives acting as inhibitors of two-component systems.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Proteínas Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Acetoacetatos/metabolismo , Aciltransferases/metabolismo , Cálcio/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Regulação para Baixo/efeitos dos fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/antagonistas & inibidores , Óperon/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
10.
Metab Eng ; 14(4): 354-65, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22484344

RESUMO

AtoSC two-component system plays a pivotal role in many regulatory indispensable Escherichia coli processes. AtoSCDAEB regulon, comprising the AtoSC system and the atoDAEB operon, regulates the short-chain fatty acids catabolism. We report here, that AtoSC up-regulates the high-molecular weight PHB biosynthesis, in recombinant phaCAB(+)E. coli, with the Cupriavidus necator phaCAB operon. PHB accumulation was maximized upon the acetoacetate-mediated induction of AtoSC, under glucose 1% w/v, resulting in a yield of 1.73 g/l with a biopolymer content of 64.5% w/w. The deletion of the atoSC locus, in the ΔatoSC strains, resulted in a 5 fold reduction of PHB accumulation, which was restored by the extrachromosomal introduction of the AtoSC system. The deletion of the atoDAEB operon triggered a significant decrease in PHB synthesis in ΔatoDAEB strains. However, the acetoacetate-induced AtoSC system in those strains increased PHB to 1.55 g/l, while AtoC expression increased PHB to 1.4 g/l upon acetoacetate. The complementation of the ΔatoDAEB phenotype was achieved by the extrachromosomal introduction of the atoSCDAEB regulon. The individual inhibition of ß-oxidation and mainly fatty-acid biosynthesis pathways by acrylic acid or cerulenin respectively, reduced PHB biosynthesis. Under those conditions the introduction of the atoSC locus or the atoSCDAEB regulon was capable to up-regulate the biopolymer accumulation. The concurrent inhibition of both the fatty acids metabolic pathways eliminated PHB production. PHB up-regulation in phaCAB(+)E. coli, by AtoSC signaling through atoDAEB operon and its participation in the fatty acids metabolism interplay, provide additional perceptions of AtoSC critical involvement in E. coli regulatory processes towards the biotechnologically improved polyhydroxyalkanoates biosynthesis.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , Proteínas Quinases/metabolismo , Regulon/fisiologia , Acetoacetatos/metabolismo , Acrilatos/farmacologia , Cerulenina/farmacologia , Cupriavidus necator/genética , Cupriavidus necator/metabolismo , Escherichia coli/efeitos dos fármacos , Ácidos Graxos/biossíntese , Deleção de Genes , Loci Gênicos , Glucose/metabolismo , Óperon/efeitos dos fármacos , Óperon/genética , Óperon/fisiologia , Regulon/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
11.
Amino Acids ; 43(2): 833-44, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22083893

RESUMO

The AtoSC two-component system in Escherichia coli is a key regulator of many physiological processes. We report here the contribution of AtoSC in E. coli motility and chemotaxis. AtoSC locus deletion in ΔatoSC cells renders cells not motile or responsive against any chemoattractant or repellent independently of the AtoSC inducer's presence. AtoSC expression through plasmid complemented the ΔatoSC phenotype. Cells expressing either AtoS or AtoC demonstrated analogous motility and chemotactic phenotypes as ΔatoSC cells, independently of AtoSC inducer's presence. Mutations of AtoC phosphate-acceptor sites diminished or abrogated E. coli chemotaxis. trAtoC, the AtoC constitutive active form which lacks its receiver domain, up-regulated E. coli motility. AtoSC enhanced the transcription of the flhDC and fliAZY operons and to a lesser extent of the flgBCDEFGHIJKL operon. The AtoSC-mediated regulation of motility and chemotactic response required also the expression of the CheAY system. The AtoSC inducers enhanced the AtoSC-mediated motility and chemotaxis. Acetoacetate or spermidine further promoted the responses of only AtoSC-expressing cells, while Ca(2+) demonstrated its effects independently of AtoSC. Histamine regulated bacterial chemotaxis only in atoSC (+) cells in a concentration-dependent manner while reversed the AtoSC-mediated effects when added at high concentrations. The trAtoC-controlled motility effects were enhanced by acetoacetate or spermidine, but not by histamine. These data reveal that AtoSC system regulates the motility and chemotaxis of E. coli, participating in the transcriptional induction of the main promoters of the chemotactic regulon and modifying the motility and chemotactic phenotypes in an induction-dependent mechanism.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Proteínas Quinases/genética , Regulon , Acetoacetatos/química , Substituição de Aminoácidos , Ácido Aspártico/química , Cálcio/química , Fatores Quimiotáticos/química , Quimiotaxia/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/fisiologia , Proteínas de Escherichia coli/metabolismo , Flagelos , Regulação Bacteriana da Expressão Gênica , Técnicas de Inativação de Genes , Glicerol/química , Histamina/química , Óperon , Fosforilação , Proteínas Quinases/metabolismo , Processamento de Proteína Pós-Traducional , Serina/química , Espermidina/química
12.
Front Biosci (Landmark Ed) ; 17(3): 1108-19, 2012 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-22201793

RESUMO

Histamine is a key mediator governing vital cellular processes in mammals beyond its decisive role in inflammation. Recent evidence implies additional actions in both eukaryotes and prokaryotes. Besides its function in host defense against bacterial infections, histamine elicits largely undefined actions in microorganisms that may contribute to bacteria-host interactions. Bacterial proliferation and adaptation are governed by sophisticated signal transduction networks, including the versatile two-component systems (TCSs) that comprise sensor histidine kinases and response regulators and rely on phosphotransfer mechanisms to exert their modulatory function. The AtoSC TCS regulates fundamental cellular processes such as short-chain fatty acid metabolism, poly-(R)-3-hydroxybutyrate (cPHB) biosynthesis and chemotaxis in Escherichia coli. The implication of exogenous histamine in the AtoSC-mediated cPHB biosynthesis and in E. coli chemotactic behavior is indicative of a putative function of histamine in bacterial physiology. The data raise questions on the significance of histamine actions in bacteria-host symbiosis, dysbiosis and pathogenicity as well as on the possible consequences upon therapeutic administration of histamine receptor-targeting agents and in particular ligands of the recently identified immunomodulatory H4 receptor.


Assuntos
Bactérias/metabolismo , Histamina/metabolismo , Transdução de Sinais , Bactérias/patogenicidade , Fenômenos Fisiológicos Bacterianos , Virulência
13.
Cell Signal ; 23(8): 1327-37, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21443947

RESUMO

AtoSC two-component system participates in many indispensable processes of Escherichia coli. We report here that the AtoSC signal transduction is inhibited by established histidine kinase inhibitors. Closantel, RWJ-49815 and TNP-ATP belonging to different chemical classes of inhibitors, abrogated the in vitro AtoS kinase autophosphorylation. However, when AtoS was embedded in the membrane fractions, higher inhibitor concentrations were required for total inhibition. When AtoS interacted with AtoC forming complex, the intrinsic histidine kinase was protected by the response regulator, requiring increased inhibitors concentrations for partially AtoS autophosphorylation reduction. The inhibitors exerted an additional function on AtoSC, blocking the phosphotransfer from AtoS to AtoC, without however, affecting AtoC~P dephosphorylation. Their in vivo consequences through the AtoSC inhibition were elucidated on atoDAEB operon expression, which was inhibited only in AtoSC-expressing bacteria where AtoSC was induced by acetoacetate or spermidine. The inhibitor effects were extended on the AtoSC regulatory role on cPHB [complexed poly-(R)-3-hydroxybutyrate] biosynthesis. cPHB was decreased upon the blockers only in acetoacetate-induced AtoSC-expressing cells. Increased ATP amounts during bacterial growth reversed the inhibitory TNP-ATP-mediated effect on cPHB. The alteration of pivotal E. coli processes as an outcome of AtoSC inhibition, establish this system as a target of two-component systems inhibitors.


Assuntos
Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Escherichia coli/antagonistas & inibidores , Escherichia coli/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/enzimologia , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/metabolismo , Guanidinas/farmacologia , Histidina Quinase , Fosforilação , Compostos de Tritil/farmacologia
14.
Biochim Biophys Acta ; 1810(5): 561-8, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21295116

RESUMO

BACKGROUND: We have shown previously that AtoSC two-component system regulates the biosynthesis of E. coli cPHB [complexed poly-(R)-3-hydroxybutyrate]. METHODS: The AtoSC involvement on fatty acids metabolism, towards cPHB synthesis, was studied using cPHB determination, gene expression, and fatty acid metabolic pathways inhibitors. RESULTS: Deletion of the atoDAEB operon from the E. coli genome resulted in a consistent reduction of cPHB accumulation. When in ΔatoDAEB cells, the atoDAEB operon and the AtoSC system were introduced extrachromosomally, a significant enhancement of cPHB levels was observed. Moreover, the introduction of a plasmid with atoSC genes regulated positively cPHB biosynthesis. A lesser cPHB enhancement was triggered when plasmids carrying either atoS or atoC were introduced. The intracellular distribution of cPHB was regulated by AtoSC or AtoC according to the inducer (acetoacetate or spermidine). Blockage of ß-oxidation by acrylic acid reduced cPHB levels, suggesting the involvement of this pathway in cPHB synthesis; however, the overproduction of AtoSC or its constituents separately resulted in cPHB enhancement. Inhibition of fatty acid biosynthesis by cerulenin resulted to a major cPHB reduction, indicating the contribution of this pathway in cPHB production. Inhibition of both ß-oxidation and fatty acid biosynthesis reduced dramatically cPHB, suggesting the contribution of both pathways in cPHB biosynthesis. CONCLUSIONS: Short fatty acid catabolism (atoDAEB operon) and fatty acids metabolic pathways participate in cPHB synthesis through the involvement of AtoSC system. GENERAL SIGNIFICANCE: The involvement of the AtoSC system in the fatty acids metabolic pathways interplay towards cPHB biosynthesis provides additional perceptions of AtoSC role on E. coli regulatory biochemical processes.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Ácidos Graxos/metabolismo , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , Proteínas Quinases/metabolismo , Acetoacetatos/farmacologia , Acrilatos/farmacologia , Cerulenina/farmacologia , Proteínas de Ligação a DNA/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Inibidores da Síntese de Ácidos Graxos/farmacologia , Immunoblotting , Modelos Biológicos , Oxirredução/efeitos dos fármacos , Plasmídeos/genética , Proteínas Quinases/genética , Espermidina/farmacologia , Fatores de Tempo
15.
Amino Acids ; 40(2): 421-30, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20563612

RESUMO

The AtoSC two-component system in E. coli consists of the AtoS sensor kinase and the AtoC response regulator. It regulates positively the transcriptional activation of atoDAEB operon, encoding enzymes involved in short-chain fatty acid catabolism upon acetoacetate-mediated induction. AtoSC acting on atoDAEB operon, regulates the biosynthesis and the intracellular distribution of short-chain poly-(R)-3-hydroxybutyrate (cPHB). A phosphorylation-incompetent AtoC form was constructed lacking its N-terminal receiver domain, trAtoC, to study the effects of AtoC domains on cPHB biosynthesis and atoDAEB operon regulation. Both cPHB biosynthesis and atoDAEB gene expression were regulated positively by trAtoC in the absence of any inducer in E. coli of both atoSC (+) and ΔatoSC genotypes. The presence of acetoacetate or spermidine further promoted these trAtoC actions. Competitive regulatory functions between the full length AtoC and trAtoC were observed referring to atoDAEB and cPHB targets as well as growth of trAtoC-overproducing atoSC (+) cells on butyrate as the sole carbon source. trAtoC in contrast to the wild-type AtoC presented different modes of cPHB and atoDAEB regulation in the presence of compounds involved in fatty acid metabolism including CoA-SH, acetyl-CoA, sodium acetate or 3-hydroxybutyryl-CoA. These data provide evidence for a role of the AtoC N-terminal receiver domain in regulating the biological activities of AtoSC as well as additional mechanisms of interactions between the AtoSC constituents including their established inducers or new effectors towards the accomplishment of the AtoSC TCS signal transduction.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Regulação Bacteriana da Expressão Gênica , Proteínas Quinases/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Ativação Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Hidroxibutiratos/metabolismo , Óperon , Poliésteres/metabolismo , Proteínas Quinases/genética , Estrutura Terciária de Proteína
16.
Biochem J ; 417(3): 667-72, 2009 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18855762

RESUMO

Escherichia coli is exposed to wide extracellular concentrations of Ca2+, whereas the cytosolic levels of the ion are subject to stringent control and are implicated in many physiological functions. The present study shows that extracellular Ca2+ controls cPHB [complexed poly-(R)-3-hydroxybutyrate] biosynthesis through the AtoS-AtoC two-component system. Maximal cPHB accumulation was observed at higher [Ca2+]e (extracellular Ca2+ concentration) in AtoS-AtoC-expressing E. coli compared with their DeltaatoSC counterparts, in both cytosolic and membrane fractions. The reversal of EGTA-mediated down-regulation of cPHB biosynthesis by the addition of Ca2+ and Mg2+ was under the control of the AtoS-AtoC system. Moreover, the Ca2+-channel blocker verapamil reduced total and membrane-bound cPHB levels, the inhibitory effect being circumvented by Ca2+ addition only in atoSC+ bacteria. Histamine and compound 48/80 affected cPHB accumulation in a [Ca2+]e-dependent manner directed by the AtoS-AtoC system. In conclusion, these data provide evidence for the involvement of external Ca2+ on cPHB synthesis regulated by the AtoS-AtoC two-component system, thus linking Ca2+ with a signal transduction system, most probably through a transporter.


Assuntos
Cálcio/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , Proteínas Quinases/metabolismo , Escherichia coli/genética , Transdução de Sinais
17.
Biochim Biophys Acta ; 1770(8): 1104-14, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17475408

RESUMO

Recent analysis revealed that, in Escherichia coli the AtoS-AtoC/Az two-component system (TCS) and its target atoDAEB operon regulate the biosynthesis of short-chain poly-(R)-3-hydroxybutyrate (cPHB) biosynthesis, a biopolymer with many physiological roles, upon acetoacetate-mediated induction. We report here that spermidine further enhanced this effect, in E. coli that overproduces both components of the AtoS-AtoC/Az TCS, without altering their protein levels. However, bacteria that overproduce either AtoS or AtoC did not display this phenotype. The extrachromosomal introduction of AtoS-AtoC/Az in an E. coli DeltaatoSC strain restored cPHB biosynthesis to the level of the atoSC(+) cells, in the presence of the polyamine. Lack of enhanced cPHB production was observed in cells overproducing the TCS that did not have the atoDAEB operon. Spermidine attained the cPHB enhancement through the AtoC/Az response regulator phosphorylation, since atoC phosphorylation site mutants, which overproduce AtoS, accumulated less amounts of cPHB, compared to their wild-type counterparts. Exogenous addition of N(8)-acetyl-spermidine resulted in elevated amounts of cPHB but at lower levels than those attained upon spermidine addition. Furthermore, AtoS-AtoC/Az altered the intracellular distribution of cPHB according to the inducer recognized by the TCS. Overall, AtoS-AtoC/Az TCS was induced by spermidine to regulate both the biosynthesis and the intracellular distribution of cPHB in E. coli.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Quinases/metabolismo , Transdução de Sinais , Espermidina/farmacologia , Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Hidroxibutiratos/metabolismo , Modelos Biológicos , Plasmídeos/genética , Poliésteres/metabolismo , Proteínas Quinases/genética , Transdução de Sinais/efeitos dos fármacos
18.
Biochim Biophys Acta ; 1760(6): 896-906, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16564134

RESUMO

The AtoS-AtoC signal transduction system in E. coli, which induces the atoDAEB operon for the growth of E. coli in short-chain fatty acids, can positively modulate the levels of poly-(R)-3-hydroxybutyrate (cPHB) biosynthesis, a biopolymer with many physiological roles in E. coli. Increased amounts of cPHB were synthesized in E. coli upon exposure of the cells to acetoacetate, the inducer of the AtoS-AtoC two-component system. While E. coli that overproduce both components of the signal transduction system synthesize higher quantities of cPHB (1.5-4.5 fold), those that overproduce either AtoS or AtoC alone do not display such a phenotype. Lack of enhanced cPHB production was also observed in cells overexpressing AtoS and phosphorylation-impaired AtoC mutants. The results were not affected by the nature of the carbon source used, i.e., glucose, acetate or acetoacetate. An E. coli strain with a deletion in the atoS-atoC locus (delta atoSC) synthesized lower amounts of cPHB compared to wild-type cells. When the delta atoSC strain was transformed with a plasmid carrying a 6.4-kb fragment encoding the AtoS-AtoC system, cPHB biosynthesis was restored to the level of the atoSC+ cells. Introduction of a multicopy plasmid carrying a functional atoDAEB operon, but not one with a promoterless operon, resulted in increased cPHB synthesis only in atoSC+ cells in the presence of acetoacetate. These results indicate that the presence of both a functional AtoS-AtoC two-component signal transduction system and a functional atoDAEB operon is critical for the enhanced cPHB biosynthesis in E. coli.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/metabolismo , Hidroxibutiratos/metabolismo , Proteínas Quinases/metabolismo , Transdução de Sinais , Acetoacetatos/farmacologia , Carbono/metabolismo , Deleção de Genes , Modelos Biológicos , Óperon/genética , Fosforilação , Plasmídeos/genética , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...