Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 13(14)2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32708217

RESUMO

In common commercially available electrochromic glass panes, the active materials such as WO3 and NiOx films are typically deposited by either physical vapor or sputtering under vacuum. In the present studies, we report on the inkjet printing method to deposit both electrochromic and ion storage electrode layers under ambient conditions. An ion storage layer based on cerium modified TiO2 and electrochromic nanocrystalline WO3 were both prepared under the wet method and deposited as inks on conductive substrates. Both compounds possess porous morphology facilitating high ion diffusion during electrochemical processes. In particular, the ion storage layer was evaluated in terms of porosity, charge capacity and ion diffusion coefficient. A scaled up 90 cm2 electrochromic device with quasi-solid-state electrolyte was made with the aforementioned materials and evaluated in terms of optical modulation in the visible region, cyclic voltammetry and color efficiency. High contrast between 13.2% and 71.6% for tinted and bleached states measured at 550 nm was monitored under low bias at +2.5 volt and -0.3 volts respectively. Moreover, the calculated energy density equal to 1.95 × 10-3 mWh cm-2 and the high areal capacitance of 156.19 mF cm-2 of the device could combine the electrochromic behavior of the cell with energy storage capability so as to be a promising candidate for future applications into smart buildings.

2.
Phys Chem Chem Phys ; 18(5): 4154-65, 2016 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-26781962

RESUMO

Hybrid materials based on perfluorophenyl functionalized quinolines directly attached onto the sp(2) hybridized surface of carbon nanostructures have been prepared and studied herein along with their precursor semiconducting small molecules. Tails of different polarities have been used so that the molecules would present improved solubility and controllable affinity for the selected substrates. These materials were evaluated for their electronic and electrochemical properties for potential application in organic photovoltaic solar cells (OPVs), using UPS, XPS and CV measurements after deposition onto oxygen plasma cleaned Si wafers or solvent treated ITO coated glass. A weak interaction between the fluorine atoms and both the Si and the ITO substrates was observed by XPS. The extent of this interfacial interaction was found to be related to the orientation of the quinoline moieties on the organic layer. Moreover, the combination of XPS and UPS analyses showed that the absolute energy value of the HOMO level increased as the amount of surface fluorine atoms increased. CV measurements revealed that hybridisation of the small molecules with carbon nanostructures decreases the materials' energy gap and increases the absolute energy value of the LUMO level. These features prove the efficiency of the proposed method to produce materials with controlled energy levels for solar cell devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...