Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ultrasonics ; 114: 106395, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33756220

RESUMO

This paper presented a novel ultrasonic wireless power link (UWPL) to provide power supply for embedded condition monitoring of enclosed metallic structures, where recharging or replacing batteries can be problematic. Two piezoelectric transducers are adopted to establish the wireless power links, within which one transducer is used to generate ultrasonic waves and the other is to receive the transferred ultrasonic energy and to energize the associated embedded condition monitoring units. A power management solution is established to regulate the receiver output into a constant voltage suitable for sensing application. A theoretical model was established to understand the UWPL dynamics and to analyze the energy budget balance between the UWPL and the sensing power demands. A finite element model was built to validate the proposed idea. The UWPL was then experimentally implemented using two piezoelectric transducers and tested in aluminium plates with different thickness. A power management sub-system was developed and tested for sensing applications. An output power of 1.73 mW was obtained on a 1.5 kΩ resister with the input voltage of 15 V at 42.6 kHz through a 6 mm-thick aluminium plate. Sufficient power can be transferred over a large distance via metallic structures, showing the capability in implementing battery-free condition monitoring of enclosed metallic structures, such as petroleum pipelines, engines, and aluminium airframe.

2.
Proc Math Phys Eng Sci ; 477(2250): 20210103, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35153566

RESUMO

Using an atomic force microscope, a nanoscale wear characterization method has been applied to a commercial steel substrate AISI 52100, a common bearing material. Two wear mechanisms were observed by the presented method: atom attrition and elastoplastic ploughing. It is shown that not only friction can be used to classify the difference between these two mechanisms, but also the 'degree of wear'. Archard's Law of adhesion shows good conformity to experimental data at the nanoscale for the elastoplastic ploughing mechanism. However, there is a distinct discontinuity between the two identified mechanisms of wear and their relation to the load and the removed volume. The length-scale effect of the material's hardness property plays an integral role in the relationship between the 'degree of wear' and load. The transition between wear mechanisms is hardness-dependent, as below a load threshold limited plastic deformation in the form of pile up is exhibited. It is revealed that the presented method can be used as a rapid wear characterization technique, but additional work is necessary to project individual asperity interaction observations to macroscale contacts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...