Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(6)2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36991765

RESUMO

The solution of the eigenvalue problem in bounded domains with planar and cylindrical stratification is a necessary preliminary task for the construction of modal solutions to canonical problems with discontinuities. The computation of the complex eigenvalue spectrum must be very accurate since losing or misplacing one of the thereto linked modes will have an important impact on the field solution. The approach followed in a number of previous works is to construct the corresponding transcendental equation and locate its roots in the complex plane using the Newton-Raphson method or Cauchy-integral-based techniques. Nevertheless, this approach is cumbersome, and its numerical stability decreases dramatically with the number of layers. An alternative, approach consists in the numerical evaluation of the matrix eigenvalues for the weak formulation for the respective 1D Sturm-Liouville problem using linear algebra tools. An arbitrary number of layers can thus be easily and robustly treated, with continuous material gradients being a limiting case. Although this approach is often used in high frequency studies involving wave propagation, this is the first time that has been used for the induction problem arising in an eddy current inspection situation. The developed method is implemented in Matlab and is used to deal with the following problems: magnetic material with a hole, a magnetic cylinder, and a magnetic ring. In all the conducted tests, the results are obtained in a very short time, without missing a single eigenvalue.

2.
Philos Trans A Math Phys Eng Sci ; 378(2182): 20190588, 2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-32921243

RESUMO

The transient response from a transmitter-receiver coil system inside a multi-layer cylindrical conductive configuration is obtained. The particular set-up applies to well logging as well as to eddy current tube testing. In this work, a number of improvements are presented to existing models for an efficient calculation of the induced voltage. These include: domain truncation, novel treatment of arbitrary number of layers in order to avoid computational overflows and efficient time response calculation. The latter is based on a combination of Laplace inversion techniques for short- and long-time transient responses. This article is part of the theme issue 'Advanced electromagnetic non-destructive evaluation and smart monitoring'.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...