Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSystems ; 9(1): e0093623, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38170982

RESUMO

Estuarine wetlands harbor considerable carbon stocks, but rising sea levels could affect their ability to sequester soil carbon as well as their potential to emit methane (CH4). While sulfate loading from seawater intrusion may reduce CH4 production due to the higher energy yield of microbial sulfate reduction, existing studies suggest other factors are likely at play. Our study of 11 wetland complexes spanning a natural salinity and productivity gradient across the San Francisco Bay and Delta found that while CH4 fluxes generally declined with salinity, they were highest in oligohaline wetlands (ca. 3-ppt salinity). Methanogens and methanogenesis genes were weakly correlated with CH4 fluxes but alone did not explain the highest rates observed. Taxonomic and functional gene data suggested that other microbial guilds that influence carbon and nitrogen cycling need to be accounted for to better predict CH4 fluxes at landscape scales. Higher methane production occurring near the freshwater boundary with slight salinization (and sulfate incursion) might result from increased sulfate-reducing fermenter and syntrophic populations, which can produce substrates used by methanogens. Moreover, higher salinities can solubilize ionically bound ammonium abundant in the lower salinity wetland soils examined here, which could inhibit methanotrophs and potentially contribute to greater CH4 fluxes observed in oligohaline sediments.IMPORTANCELow-level salinity intrusion could increase CH4 flux in tidal freshwater wetlands, while higher levels of salinization might instead decrease CH4 fluxes. High CH4 emissions in oligohaline sites are concerning because seawater intrusion will cause tidal freshwater wetlands to become oligohaline. Methanogenesis genes alone did not account for landscape patterns of CH4 fluxes, suggesting mechanisms altering methanogenesis, methanotrophy, nitrogen cycling, and ammonium release, and increasing decomposition and syntrophic bacterial populations could contribute to increases in net CH4 flux at oligohaline salinities. Improved understanding of these influences on net CH4 emissions could improve restoration efforts and accounting of carbon sequestration in estuarine wetlands. More pristine reference sites may have older and more abundant organic matter with higher carbon:nitrogen compared to wetlands impacted by agricultural activity and may present different interactions between salinity and CH4. This distinction might be critical for modeling efforts to scale up biogeochemical process interactions in estuarine wetlands.


Assuntos
Compostos de Amônio , Áreas Alagadas , Solo/química , Metano/metabolismo , Salinidade , Carbono/metabolismo , Nitrogênio , Sulfatos
2.
ISME J ; 16(1): 284-295, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34321618

RESUMO

Wetlands are important carbon (C) sinks, yet many have been destroyed and converted to other uses over the past few centuries, including industrial salt making. A renewed focus on wetland ecosystem services (e.g., flood control, and habitat) has resulted in numerous restoration efforts whose effect on microbial communities is largely unexplored. We investigated the impact of restoration on microbial community composition, metabolic functional potential, and methane flux by analyzing sediment cores from two unrestored former industrial salt ponds, a restored former industrial salt pond, and a reference wetland. We observed elevated methane emissions from unrestored salt ponds compared to the restored and reference wetlands, which was positively correlated with salinity and sulfate across all samples. 16S rRNA gene amplicon and shotgun metagenomic data revealed that the restored salt pond harbored communities more phylogenetically and functionally similar to the reference wetland than to unrestored ponds. Archaeal methanogenesis genes were positively correlated with methane flux, as were genes encoding enzymes for bacterial methylphosphonate degradation, suggesting methane is generated both from bacterial methylphosphonate degradation and archaeal methanogenesis in these sites. These observations demonstrate that restoration effectively converted industrial salt pond microbial communities back to compositions more similar to reference wetlands and lowered salinities, sulfate concentrations, and methane emissions.


Assuntos
Metano , Microbiota , Metano/metabolismo , Lagoas , RNA Ribossômico 16S/genética , Áreas Alagadas
3.
Genes (Basel) ; 12(10)2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34681003

RESUMO

Anaerobic archaeal methanogens are key players in the global carbon cycle due to their role in the final stages of organic matter decomposition in anaerobic environments such as wetland sediments. Here we present the first draft metagenome-assembled genome (MAG) sequence of an unclassified Methanosarcinaceae methanogen phylogenetically placed adjacent to the Methanolobus and Methanomethylovorans genera that appears to be a distinct genus and species. The genome is derived from sediments of a hypersaline (97-148 ppt chloride) unrestored industrial saltern that has been observed to be a significant methane source. The source sediment is more saline than previous sources of Methanolobus and Methanomethylovorans. We propose a new genus name, Methanosalis, to house this genome, which we designate with the strain name SBSPR1A. The MAG was binned with CONCOCT and then improved via scaffold extension and reassembly. The genome contains pathways for methylotrophic methanogenesis from trimethylamine and dimethylamine, as well as genes for the synthesis and transport of compatible solutes. Some genes involved in acetoclastic and hydrogenotrophic methanogenesis are present, but those pathways appear incomplete in the genome. The MAG was more abundant in two former industrial salterns than in a nearby reference wetland and a restored wetland, both of which have much lower salinity levels, as well as significantly lower methane emissions than the salterns.


Assuntos
Archaea/genética , Ecossistema , Metagenoma/genética , Tolerância ao Sal/genética , Archaea/metabolismo , Euryarchaeota/genética , Metano/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Salinidade , Áreas Alagadas
4.
ISME J ; 5(1): 42-50, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20631808

RESUMO

Understanding biotic versus abiotic forces that shape community structure is a fundamental aim of microbial ecology. The acidic and heavy metal extreme Río Tinto (RT) in southwestern Spain provides a rare opportunity to conduct an ecosystem-wide biodiversity inventory at the level of all three domains of life, because diversity there is low and almost exclusively microbial. Despite improvements in high-throughput DNA sequencing, environmental biodiversity studies that use molecular metrics and consider entire ecosystems are rare. These studies can be prohibitively expensive if domains are considered separately, and differences in copy number of eukaryotic ribosomal RNA genes can bias estimates of relative abundances of phylotypes recovered. In this study we have overcome these barriers (1) by targeting all three domains in a single polymerase chain reaction amplification and (2) by using a replicated sampling design that allows for incidence-based methods to extract measures of richness and carry out downstream analyses that address community structuring effects. Our work showed that combined bacterial and archaeal richness is an order of magnitude higher than eukaryotic richness. We also found that eukaryotic richness was highest at the most extreme sites, whereas combined bacterial and archaeal richness was highest at less extreme sites. Quantitative community phylogenetics showed abiotic forces to be primarily responsible for shaping the RT community structure. Canonical correspondence analysis revealed co-occurrence of obligate symbionts and their putative hosts that may contribute to biotic forces shaping community structure and may further provide a possible mechanism for persistence of certain low-abundance bacteria encountered in the RT.


Assuntos
Biota , Meio Ambiente , Rios , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Eucariotos/classificação , Eucariotos/genética , Genes de RNAr/genética , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...