Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 282: 130971, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34107423

RESUMO

Pharmaceutical drugs' removal from wastewater by photocatalytic oxidation process is considered as an attractive approach and environmentally friendly solution. This report aims to appraise the practical application potential of Ag/g-C3N4/ZnO nanorods toward the wastewater treatment of the pharmaceutical industry. The catalysts are synthesized by straightforward and environmentally-friendly strategies. Specifically, g-C3N4/ZnO nanorods heterostructure is constructed by a simple self-assembly method, and then Ag nanoparticles are decorated on g-C3N4/ZnO nanorods by a photoreduction route. The results show that three commercial drugs (paracetamol, amoxicillin, and cefalexin) with high concentration (40 mg L-1) are significantly degraded in the existence of a small dosage of Ag/g-C3N4/ZnO nanorods (0.08 g L-1). The Ag/g-C3N4/ZnO nanorods photocatalyst exhibits degradation performance of paracetamol higher 3.8, 1.8, 1.3 times than pristine g-C3N4, ZnO nanorods, and g-C3N4/ZnO nanorods. Furthermore, Ag/g-C3N4/ZnO nanorods have an excellent reusability and a chemical stability that achieved paracetamol degradation efficiency of 78% and remained chemical structure of the photocatalyst after five cycles. In addition, the photocatalytic mechanism explanation and comparison of photocatalytic drugs' degradation ability have also been discussed in this study.


Assuntos
Nanopartículas Metálicas , Preparações Farmacêuticas , Purificação da Água , Óxido de Zinco , Prata
2.
J Nanosci Nanotechnol ; 19(8): 5195-5204, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30913834

RESUMO

Synthesis of reduced graphene oxide/TiO2 nanotubes (rGO/TNTs) composite is being attended. However, the synthesis of rGO/TNTs composite directly from graphite oxide with a greener approach is still challenging. In this study, we directly synthesized rGO/TNTs composite by a simple method from graphite oxide and titanium dioxide nanotube (TNTs) powder without involving any assistant agents. The formation of the graphene oxide (GO) was confirmed by X-ray diffraction (XRD) pattern, transmission electron microscope (TEM) image, Fourier-transform infrared (FTIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Besides, photoluminescence analysis (PL) was conducted to determine the defects of materials. The methylene blue (MB) photodegradation efficiency under visible light of rGO/TNTs composite achieved 80% after 180 min. In addition, the key of the photocatalytic mechanism of rGO/TNTs under visible light was systematically investigated via trapping experiments.

3.
Chemosphere ; 215: 323-332, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30321811

RESUMO

Titania (TiO2) as a commercial photocatalyst has been continually struggling due to the limitation of ultraviolet light response and the high recombination rate of photoinduced carriers. The development of heterojunction nanostructures provides great promise to achieve the activation by visible light and suppress the photoinduced electron-hole pairs recombination. Herein, we synthesized a SnO2 and TiO2 nanotube heterojunction (SnO2/TNT) via a one-step hydrothermal strategy and systematically investigated NO photocatalytic degradation over the SnO2/TNTs heterojunction under visible light at the parts per billion level. Various physicochemical characterization techniques were conducted to verify the physical and chemical properties of the materials. For example, the morphology and lattice spacings of the materials were examined by high-resolution TEM (HR-TEM) images and selected area electron diffraction (SAED) pattern, X-ray photoelectron spectroscopy (XPS) was employed to study the oxidation states and propose the band alignment diagram of the SnO2/TNTs heterojunction, and photoluminescence spectroscopy was employed for understanding of carrier's trapping, migration and transfer. The photocatalytic results show that the SnO2/TNTs heterojunction exhibits the superior photocatalytic performance, and the photocatalytic degradation efficiency of NO can reach 60% under visible light with effective inhibition of NO2 production. The excellent photocatalytic ability is due to the low recombination rate of the photoinduced electron-hole pairs. Furthermore, a trapping experiment was combined with electron spin resonance (ESR) and utilized to identify the involvement of reactive radicals in the photocatalysis process suggesting that and OH mediated pathways play a predominant role in NO removal.


Assuntos
Luz , Óxido Nítrico/química , Compostos de Estanho/química , Titânio/química , Catálise , Nanotubos/química , Oxirredução , Processos Fotoquímicos , Espectroscopia Fotoeletrônica
4.
J Photochem Photobiol B ; 182: 108-114, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29656219

RESUMO

Silver nanoparticles (Ag NPs) were synthesized by an improved green synthesis method via a photo-reduction process using low-power UV light in the presence of poly (vinyl pyrrolidone) (PVP) as the surface stabilizer. The effective synthesis process was achieved by optimized synthesis parameters such as C2H5OH: H2O ratio, AgNO3: PVP ratio, pH value, and reducing time. The formation of Ag NPs was identified by Ultraviolet-visible (UV-vis) absorption spectra, X-ray diffraction pattern (XRD) and Fourier transform infrared spectroscopy (FTIR) spectra. Ag NPs were crystallized according to (111), (200), and (220) planes of the face-centered cubic. The transmission electron microscopy (TEM) image showed that the morphology of Ag NPs was uniform spherical with the average particle size of 16 ±â€¯2 nm. The results of XRD pattern, TEM image, and dynamic light scattering (DLS) analysis proved that Ag crystals with uniform size were formed after the reduction process. The mechanism of the formation of Ag NPs was proposed and confirmed by FTIR spectra. The antibacterial activity of Ag NPs against Escherichia coli (E. coli) was tested and approximately 100% of E. coli was eliminated by Ag NPs 35 ppm. In the future, this study can become a new process for the application of Ag NPs as an antibiotic in the industrial scale.


Assuntos
Antibacterianos , Escherichia coli/efeitos dos fármacos , Química Verde , Microbiologia Industrial/métodos , Nanopartículas Metálicas/química , Prata , Antibacterianos/síntese química , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Transmissão , Estrutura Molecular , Tamanho da Partícula , Prata/química , Prata/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier
5.
J Nanosci Nanotechnol ; 17(2): 1497-503, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29688660

RESUMO

In this paper, we surveyed the effect of the concentration of AgNO3 solution and the time of photoreduction on the formation of Ag nanoparticles supported on TiO2 nanotubes (Ag/TNTs) were synthesized by photoreduction method. Their morphology and crystal structure were determined by Transmission Electron Microscopy images (TEM), X-ray Diffraction (XRD) and Energy-dispersive X-ray spectroscopy (EDX) data. Results show that the amount of Ag nanoparticles supported on TNTs could be controlled by changing of the illumination time (photoreduction time) and the concentration of AgNO3 solution. Besides, the annealing temperature has a direct influence on the morphology of TNTs. Especially, the nanotubes transformed into nanorods at 500 °C for 2 hours.

6.
J Nanosci Nanotechnol ; 15(12): 10091-107, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26682455

RESUMO

In this review, we have presented the latest results and highlights on biomedical applications of a class of noble metal nanoparticles, such as gold, silver and platinum, and a class of magnetic nanoparticles, such as cobalt, nickel and iron. Their most important related compounds are also discussed for biomedical applications for treating various diseases, typically as cancers. At present, both physical and chemical methods have been proved very successful to synthesize, shape, control, and produce metal- and oxide-based homogeneous particle systems, e.g., nanoparticles and microparticles. Therefore, we have mainly focused on functional magnetic nanoparticles for nanomedicine because of their high bioadaptability to the organs inside human body. Here, bioconjugation techniques are very crucial to link nanoparticles with conventional drugs, nanodrugs, biomolecules or polymers for biomedical applications. Biofunctionalization of engineered nanoparticles for biomedicine is shown respective to in vitro and in vivo analysis protocols that typically include drug delivery, hyperthermia therapy, magnetic resonance imaging (MRI), and recent outstanding progress in sweep imaging technique with Fourier transformation (SWIFT) MRI. The latter can be especially applied using magnetic nanoparticles, such as Co-, Fe-, Ni-based nanoparticles, α-Fe2O3, and Fe3O4 oxide nanoparticles for analysis and treatment of malignancies. Therefore, this review focuses on recent results of scientists, and related research on diagnosis and treatment methods of common and dangerous diseases by biomedical engineered nanoparticles. Importantly, nanosysems (nanoparticles) or microsystems (microparticles) or hybrid micronano systems are shortly introduced into nanomedicine. Here, Fe oxide nanoparticles ultimately enable potential and applicable technologies for tumor-targeted imaging and therapy. Finally, we have shown the latest aspects of the most important Fe-based particle systems, such as Fe, α-Fe2O3, Fe3O4, Fe-Fe(x)O(y) oxide core-shell nanoparticles, and CoFe2O4-MnFe2O4 core-shell nanoparticles for nanomedicine in the efficient treatment of large tumors at low cost in near future.


Assuntos
Tecnologia Biomédica , Nanopartículas de Magnetita , Nanomedicina , Sistemas de Liberação de Medicamentos , Compostos Férricos , Humanos , Hipertermia Induzida , Imageamento por Ressonância Magnética , Magnetismo
7.
J Nanosci Nanotechnol ; 15(7): 5202-6, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26373106

RESUMO

TiO2 nanotubes (TNTs) were synthesized by a hydrothermal method from commercial TiO2 in NaOH followed by HCl washing. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmitting electron microscopy (TEM), and Brunauer-Emmet-Teller (BET) measurements. The untreated acid samples (pH ~ 12) don't appear nanotubes structure, while acid-treated samples until the pH reached around 2 have approximate diameters of nanotubes of 10 nm. The samples reaction temperature at 135 °C appear nanotubes structure while the samples reaction temperature at 150 °C have combination of the nanotubes and the samples treatment temperature at 170 °C appear both nanotubes structure and particles clumping together. The surface area of the TNTs was 83,5 m2/g while the surface area of commercial TiO2 particles was 41 m2/g.

8.
J Phys Condens Matter ; 27(30): 305005, 2015 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-26173094

RESUMO

Using first-principles calculations, we investigate the interactions between a WS2 monolayer and several gas molecules (CO, H2O, NO, and O2). Different sets of calculations are performed based on generalized-gradient approximations (GGAs) and GGA + U ([Formula: see text] eV) calculations with D2 dispersion corrections. In general, GGA and GGA + U establish good consistency with each other in terms of absorption stability and band gap estimations. Van der Waals density functional (vdW-DF) calculations are also performed to validate long-range gas molecule-WS2 monolayer interactions, and the resultant absorption energies of four gas-absorption cases (from 0.21 to 0.25 eV) are significantly larger than those obtained from calculations using empirical D2 corrections (from 0.11 to 0.19 eV). The reported absorption energies clearly indicate van der Waals interactions between the WS2 monolayer and gas molecules. The NO and O2 absorptions are shown to narrow the band gaps of the WS2 material to 0.75-0.95 eV and produce small magnetic moments (0.71 µB and 1.62 µB, respectively). Moreover, these two gas molecules also possess good charge transferability to WS2. This observation is important for NO- and O2-sensing applications on the WS2 surface. Interestingly, WS2 can also activate the dissociation of O2 with an estimated barrier of 2.23 eV.

9.
Recent Pat Nanotechnol ; 8(1): 52-61, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24261920

RESUMO

In this review, we have presented the controlled synthesis of Fe-based metal and oxide nanoparticles with large size by chemical methods. The issues of the size, shape and morphology of Fe nanoparticles are discussed in the certain ranges of practical applications in biology and medicine. The homogeneous nanosystems of Fe-based metal and oxide nanoparticles with various sizes and shapes from the nano-to-micro ranges can be used in order to meet the demands of the treatments of dangerous tumors and cancers through magnetic hyperthermia and magnetic resonance imaging (MRI). In this context, the polyhedral Fe-based metal and oxide nanoparticles having large size in the ranges from 1000 nm to 5000 nm can be potentially used in magnetic hyperthermia and MRI in the innovative drug delivery, diagnosis, treatment, and therapy of tumor and cancer diseases because of their very high bio-adaptability. We have suggested that high stability and durability of Fe-based metal and oxide nanoparticles are very crucial to recent magnetic hyperthermia and MRI technology. The roles of various Fe-based nanostructures are focused in biomedical applications of tumors and cancers diagnostics, targeted drug delivery, and magnetic hyperthermia. Finally, Fe-based, α-, ß- and γ-Fe2O3, and Fe3O4-based nanoparticles are shortly discussed in various potential applications in catalysis, biology, and medicine.


Assuntos
Biologia , Ferro/química , Medicina , Nanopartículas/química , Óxidos/química , Pesquisa , Nanopartículas/ultraestrutura
10.
J Nanosci Nanotechnol ; 13(7): 4799-824, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23901503

RESUMO

In this review, we present the synthesis and characterization of Pt, Pd, Pt based bimetallic and multi-metallic nanoparticles with mixture, alloy and core-shell structure for nano-catalysis, energy conversion, and fuel cells. Here, Pt and Pd nanoparticles with modified nanostructures can be controllably synthesized via chemistry and physics for their uses as electro-catalysts. The cheap base metal catalysts can be studied in the relationship of crystal structure, size, morphology, shape, and composition for new catalysts with low cost. Thus, Pt based alloy and core-shell catalysts can be prepared with the thin Pt and Pt-Pd shell, which are proposed in low and high temperature proton exchange membrane fuel cells (PEMFCs), and direct methanol fuel cells (DMFCs). We also present the survey of the preparation of Pt and Pd based catalysts for the better catalytic activity, high durability, and stability. The structural transformations, quantum-size effects, and characterization of Pt and Pd based catalysts in the size ranges of 30 nm (1-30 nm) are presented in electro-catalysis. In the size range of 10 nm (1-10 nm), the pure Pt catalyst shows very large surface area for electro-catalysis. To achieve homogeneous size distribution, the shaped synthesis of the polyhedral Pt nanoparticles is presented. The new concept of shaping specific shapes and morphologies in the entire nano-scale from nano to micro, such as polyhedral, cube, octahedra, tetrahedra, bar, rod, and others of the nanoparticles is proposed, especially for noble and cheap metals. The uniform Pt based nanosystems of surface structure, internal structure, shape, and morphology in the nanosized ranges are very crucial to next fuel cells. Finally, the modifications of Pt and Pd based catalysts of alloy, core-shell, and mixture structures lead to find high catalytic activity, durability, and stability for nano-catalysis, energy conversion, fuel cells, especially the next large-scale commercialization of next PEMFCs, and DMFCs.


Assuntos
Fontes de Energia Elétrica , Nanopartículas Metálicas/química , Metanol/química , Paládio/química , Platina/química , Polímeros/química , Catálise , Eletrólitos/química , Desenho de Equipamento , Análise de Falha de Equipamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...