Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Algorithms Mol Biol ; 7(1): 36, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23241267

RESUMO

Recently one step mutation matrices were introduced to model the impact of substitutions on arbitrary branches of a phylogenetic tree on an alignment site. This concept works nicely for the four-state nucleotide alphabet and provides an efficient procedure conjectured to compute the minimal number of substitutions needed to transform one alignment site into another. The present paper delivers a proof of the validity of this algorithm. Moreover, we provide several mathematical insights into the generalization of the OSM matrix to multi-state alphabets. The construction of the OSM matrix is only possible if the matrices representing the substitution types acting on the character states and the identity matrix form a commutative group with respect to matrix multiplication. We illustrate this approach by looking at Abelian groups over twenty states and critically discuss their biological usefulness when investigating amino acids.

2.
Mol Biol Evol ; 29(2): 663-73, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21940641

RESUMO

Among the criteria to evaluate the performance of a phylogenetic method, robustness to model violation is of particular practical importance as complete a priori knowledge of evolutionary processes is typically unavailable. For studies of robustness in phylogenetic inference, a utility to add well-defined model violations to the simulated data would be helpful. We therefore introduce ImOSM, a tool to imbed intermittent evolution as model violation into an alignment. Intermittent evolution refers to extra substitutions occurring randomly on branches of a tree, thus changing alignment site patterns. This means that the extra substitutions are placed on the tree after the typical process of sequence evolution is completed. We then study the robustness of widely used phylogenetic methods: maximum likelihood (ML), maximum parsimony (MP), and a distance-based method (BIONJ) to various scenarios of model violation. Violation of rates across sites (RaS) heterogeneity and simultaneous violation of RaS and the transition/transversion ratio on two nonadjacent external branches hinder all the methods recovery of the true topology for a four-taxon tree. For an eight-taxon balanced tree, the violations cause each of the three methods to infer a different topology. Both ML and MP fail, whereas BIONJ, which calculates the distances based on the ML estimated parameters, reconstructs the true tree. Finally, we report that a test of model homogeneity and goodness of fit tests have enough power to detect such model violations. The outcome of the tests can help to actually gain confidence in the inferred trees. Therefore, we recommend using these tests in practical phylogenetic analyses.


Assuntos
Simulação por Computador , Modelos Genéticos , Modelos Teóricos , Filogenia , Algoritmos , Evolução Biológica , Evolução Molecular , Funções Verossimilhança
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...