Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Mater ; 19(5): 576, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31719690

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
Nat Mater ; 19(4): 386-390, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31685944

RESUMO

Chirality, a foundational concept throughout science, may arise at ferromagnetic domain walls1 and in related objects such as skyrmions2. However, chiral textures should also exist in other types of ferroic materials, such as antiferromagnets, for which theory predicts that they should move faster for lower power3, and ferroelectrics, where they should be extremely small and possess unusual topologies4,5. Here, we report the concomitant observation of antiferromagnetic and electric chiral textures at domain walls in the room-temperature ferroelectric antiferromagnet BiFeO3. Combining reciprocal and real-space characterization techniques, we reveal the presence of periodic chiral antiferromagnetic objects along the domain walls as well as a priori energetically unfavourable chiral ferroelectric domain walls. We discuss the mechanisms underlying their formation and their relevance for electrically controlled topological oxide electronics and spintronics.

3.
Nanotechnology ; 30(28): 285201, 2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-30925492

RESUMO

Magnetization dynamics is of great interest in the aim of using spins in nanoscale information technology, which ultimately should reach the atomic size. In the present work, we explore magnetization and spin dynamics in atomic ferromagnetic contacts both experimentally and theoretically. We demonstrate that domain walls induce a giant rectification effect as the DC voltages measured across the contacts are greatly enhanced by the presence of a domain wall. This effect is understood using multiscale dynamic simulations showing that the atomic sized walls oscillate, both in position and size, when submitted to the radio-frequency excitation. This leads to an increase by three orders of magnitude due to the large atomic scale spin excursion at resonance in the presence of an atomic sized domain wall. Beside the interesting amplified rectification, this could also be used as a unique tool to measure dynamical properties at the atomic scale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...