Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Manage ; 60(6): 1101-1115, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28993863

RESUMO

Hydrological processes drive the ecological functioning and sustainability of cottonwood-dominated riparian ecosystems in the arid southwestern USA. Snowmelt runoff elevates groundwater levels and inundates floodplains, which promotes cottonwood germination. Once established, these phreatophytes rely on accessible water tables (WTs). In New Mexico's Middle Rio Grande corridor diminished flooding and deepening WTs threaten native riparian communities. We monitored surface flows and riparian WTs for up to 14 years, which revealed that WTs and surface flows, including peak snowmelt discharge, respond to basin climate conditions and resource management. WT hydrographs influence the composition of riparian communities and can be used to assess if potential restoration sites meet native vegetation tolerances for WT depths, rates of recession, and variability throughout their life stages. WTs were highly variable in some sites, which can preclude native vegetation less adapted to deep drawdowns during extended droughts. Rates of WT recession varied between sites and should be assessed in regard to recruitment potential. Locations with relatively shallow WTs and limited variability are likely to be more viable for successful restoration. Suitable sites have diminished greatly as the once meandering Rio Grande has been constrained and depleted. Increasing demands on water and the presence of invasive vegetation better adapted to the altered hydrologic regime further impact native riparian communities. Long-term monitoring over a range of sites and hydroclimatic extremes reveals attributes that can be evaluated for restoration potential.


Assuntos
Ecossistema , Monitoramento Ambiental/métodos , Água Doce/análise , Água Subterrânea/análise , Populus/crescimento & desenvolvimento , Movimentos da Água , Clima Desértico , Secas , Recuperação e Remediação Ambiental , Inundações , Sudoeste dos Estados Unidos
2.
Glob Chang Biol ; 23(3): 1095-1108, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27612326

RESUMO

Global environmental change is altering temperature, precipitation patterns, resource availability, and disturbance regimes. Theory predicts that ecological presses will interact with pulse events to alter ecosystem structure and function. In 2006, we established a long-term, multifactor global change experiment to determine the interactive effects of nighttime warming, increased atmospheric nitrogen (N) deposition, and increased winter precipitation on plant community structure and aboveground net primary production (ANPP) in a northern Chihuahuan Desert grassland. In 2009, a lightning-caused wildfire burned through the experiment. Here, we report on the interactive effects of these global change drivers on pre- and postfire grassland community structure and ANPP. Our nighttime warming treatment increased winter nighttime air temperatures by an average of 1.1 °C and summer nighttime air temperature by 1.5 °C. Soil N availability was 2.5 times higher in fertilized compared with control plots. Average soil volumetric water content (VWC) in winter was slightly but significantly higher (13.0% vs. 11.0%) in plots receiving added winter rain relative to controls, and VWC was slightly higher in warmed (14.5%) compared with control (13.5%) plots during the growing season even though surface soil temperatures were significantly higher in warmed plots. Despite these significant treatment effects, ANPP and plant community structure were highly resistant to these global change drivers prior to the fire. Burning reduced the cover of the dominant grasses by more than 75%. Following the fire, forb species richness and biomass increased significantly, particularly in warmed, fertilized plots that received additional winter precipitation. Thus, although unburned grassland showed little initial response to multiple ecological presses, our results demonstrate how a single pulse disturbance can interact with chronic alterations in resource availability to increase ecosystem sensitivity to multiple drivers of global environmental change.


Assuntos
Clima Desértico , Incêndios , Pradaria , Ecossistema , Poaceae , Chuva , Estações do Ano , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...