Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 18(10): 2121-2137, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31324658

RESUMO

Exposure of blood plasma/serum (P/S) to thawed conditions (> -30 °C) can produce biomolecular changes that skew measurements of biomarkers within archived patient samples, potentially rendering them unfit for molecular analysis. Because freeze-thaw histories are often poorly documented, objective methods for assessing molecular fitness before analysis are needed. We report a 10-µl, dilute-and-shoot, intact-protein mass spectrometric assay of albumin proteoforms called "ΔS-Cys-Albumin" that quantifies cumulative exposure of archived P/S samples to thawed conditions. The relative abundance of S-cysteinylated (oxidized) albumin in P/S increases inexorably but to a maximum value under 100% when samples are exposed to temperatures > -30 °C. The difference in the relative abundance of S-cysteinylated albumin (S-Cys-Alb) before and after an intentional incubation period that drives this proteoform to its maximum level is denoted as ΔS-Cys-Albumin. ΔS-Cys-Albumin in fully expired samples is zero. The range (mean ± 95% CI) observed for ΔS-Cys-Albumin in fresh cardiac patient P/S (n = 97) was, for plasma 12-29% (20.9 ± 0.75%) and for serum 10-24% (15.5 ± 0.64%). The multireaction rate law that governs S-Cys-Alb formation in P/S was determined and shown to predict the rate of formation of S-Cys-Alb in plasma and serum samples-a step that enables back-calculation of the time at which unknown P/S specimens have been exposed to room temperature. A blind challenge demonstrated that ΔS-Cys-Albumin can detect exposure of groups (n = 6 each) of P/S samples to 23 °C for 2 h, 4 °C for 16 h, or -20 °C for 24 h-and exposure of individual specimens for modestly increased times. An unplanned case study of nominally pristine serum samples collected under NIH-sponsorship demonstrated that empirical evidence is required to ensure accurate knowledge of archived P/S biospecimen storage history.


Assuntos
Biomarcadores/análise , Plasma/química , Soro/química , Cisteína/química , Congelamento , Humanos , Espectrometria de Massas , Albumina Sérica/química
2.
Proc Natl Acad Sci U S A ; 111(23): E2376-83, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24912189

RESUMO

The active sites of enzymes consist of residues necessary for catalysis and structurally important noncatalytic residues that together maintain the architecture and function of the active site. Examples of evolutionary interactions between catalytic and noncatalytic residues have been difficult to define and experimentally validate due to a general intolerance of these residues to substitution. Here, using computational methods to predict coevolving residues, we identify a network of positions consisting of two catalytic metal-binding residues and two adjacent noncatalytic residues in LAGLIDADG homing endonucleases (LHEs). Distinct combinations of the four residues in the network map to distinct LHE subfamilies, with a striking distribution of the metal-binding Asp (D) and Glu (E) residues. Mutation of these four positions in three LHEs--I-LtrI, I-OnuI, and I-HjeMI--indicate that the combinations of residues tolerated are specific to each enzyme. Kinetic analyses under single-turnover conditions revealed that I-LtrI activity could be modulated over an ∼100-fold range by mutation of residues in the coevolving network. I-LtrI catalytic site variants with low activity could be rescued by compensatory mutations at adjacent noncatalytic sites that restore an optimal coevolving network and vice versa. Our results demonstrate that LHE activity is constrained by an evolutionary barrier of residues with strong context-dependent effects. Creation of optimal coevolving active-site networks is therefore an important consideration in engineering of LHEs and other enzymes.


Assuntos
Domínio Catalítico/genética , Endonucleases/genética , Evolução Molecular , Mutação , Ácido Aspártico/química , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Sítios de Ligação/genética , Biocatálise , Endonucleases/química , Endonucleases/metabolismo , Ácido Glutâmico/química , Ácido Glutâmico/genética , Ácido Glutâmico/metabolismo , Modelos Genéticos , Modelos Moleculares , Filogenia , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...