Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 7394, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32355195

RESUMO

Modern speciation theory has greatly benefited from a variety of simple mathematical models focusing on the conditions and patterns of speciation and diversification in the presence of gene flow. Unfortunately the application of general theoretical concepts and tools to specific ecological systems remains a challenge. Here we apply modeling tools to better understand adaptive divergence of whitefish during the postglacial period in lakes of northern Fennoscandia. These lakes harbor up to three different morphs associated with the three major lake habitats: littoral, pelagic, and profundal. Using large-scale individual-based simulations, we aim to identify factors required for in situ emergence of the pelagic and profundal morphs in lakes initially colonized by the littoral morph. The importance of some of the factors we identify and study - sufficiently large levels of initial genetic variation, size- and habitat-specific mating, sufficiently large carrying capacity of the new niche - is already well recognized. In addition, our model also points to two other factors that have been largely disregarded in theoretical studies: fitness-dependent dispersal and strong predation in the ancestral niche coupled with the lack of it in the new niche(s). We use our theoretical results to speculate about the process of diversification of whitefish in Fennoscandia and to identify potentially profitable directions for future empirical research.


Assuntos
Adaptação Fisiológica , Ecossistema , Modelos Biológicos , Comportamento Predatório , Salmonidae/fisiologia , Animais , Finlândia , Lagos
2.
Evolution ; 73(8): 1504-1516, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30980527

RESUMO

Speciation is the process that generates biodiversity, but recent empirical findings show that it can also fail, leading to the collapse of two incipient species into one. Here, we elucidate the mechanisms behind speciation collapse using a stochastic individual-based model with explicit genetics. We investigate the impact of two types of environmental disturbance: deteriorated visual conditions, which reduce foraging ability and impede mate choice, and environmental homogenization, which restructures ecological niches. We find that: (1) Species pairs can collapse into a variety of forms including new species pairs, monomorphic or polymorphic generalists, or single specialists. Notably, polymorphic generalist forms may be a transient stage to a monomorphic population; (2) Environmental restoration enables species pairs to reemerge from single generalist forms, but not from single specialist forms; (3) Speciation collapse is up to four orders of magnitude faster than speciation, while the reemergence of species pairs can be as slow as de novo speciation; (4) Although speciation collapse can be predicted from either demographic, phenotypic, or genetic signals, observations of phenotypic changes allow the most general and robust warning signal of speciation collapse. We conclude that factors altering ecological niches can reduce biodiversity by reshaping the ecosystem's evolutionary attractors.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Especiação Genética , Animais , Meio Ambiente , Comportamento Alimentar , Preferência de Acasalamento Animal , Modelos Biológicos , Percepção Visual
3.
BMC Evol Biol ; 17(1): 58, 2017 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-28241737

RESUMO

BACKGROUND: Over the last 300 years, interactions between alewives and zooplankton communities in several lakes in the U.S. have caused the alewives' morphology to transition rapidly from anadromous to landlocked. Lakes with landlocked alewives contain smaller-bodied zooplankton than those without alewives. Landlocked adult alewives display smaller body sizes, narrower gapes, smaller inter-gill-raker spacings, reach maturity at an earlier age, and are less fecund than anadromous alewives. Additionally, landlocked alewives consume pelagic prey exclusively throughout their lives whereas anadromous alewives make an ontogenetic transition from pelagic to littoral prey. These rapid, well-documented changes in the alewives' morphology provide important insights into the morphological evolution of fish. Predicting the morphological evolution of fish is crucial for fisheries and ecosystem management, but the involvement of multiple trophic interactions make predictions difficult. To obtain an improved understanding of rapid morphological change in fish, we developed an individual-based model that simulated rapid changes in the body size and gill-raker count of a fish species in a hypothetical, size-structured prey community. Model parameter values were based mainly on data from empirical studies on alewives. We adopted a functional trait approach; consequently, the model explicitly describes the relationships between prey body size, alewife body size, and alewife gill-raker count. We sought to answer two questions: (1) How does the impact of alewife populations on prey feed back to impact alewife size and gill raker number under several alternative scenarios? (2) Will the trajectory of the landlocked alewives' morphological evolution change after 150-300 years in freshwater? RESULTS: Over the first 250 years, the alewives' numbers of gill-rakers only increased when reductions in their body size substantially improved their ability to forage for small prey. Additionally, alewives' gill-raker counts increased more rapidly as the adverse effects of narrow gill-raker spacings on foraging for large prey were made less severe. For the first 150-250 years, alewives' growth decreased monotonically, and their gill-raker number increased monotonically. After the first 150-250 years, however, the alewives exhibited multiple evolutionary morphological trajectories in different trophic settings. In several of these settings, their evolutionary trajectories even reversed after the first 150-250 years. CONCLUSIONS: Alewives affected the abundance and morphology of their prey, which in turn changed the abundance and morphology of the alewives. Complex low-trophic-level interactions can alter the abundance and characteristics of alewives. This study suggests that the current morphology of recently (∼300 years)-landlocked alewives may not represent an evolutionarily stable state.


Assuntos
Ecossistema , Peixes/anatomia & histologia , Peixes/fisiologia , Lagos , Zooplâncton/fisiologia , Animais , Evolução Biológica , Feminino , Fertilidade , Brânquias/anatomia & histologia , Masculino
4.
Am Nat ; 186(5): E126-43, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26655782

RESUMO

Phenotypic plasticity is the ability of one genotype to produce different phenotypes depending on environmental conditions. Several conceptual models emphasize the role of plasticity in promoting reproductive isolation and, ultimately, speciation in populations that forage on two or more resources. These models predict that plasticity plays a critical role in the early stages of speciation, prior to genetic divergence, by facilitating fast phenotypic divergence. The ability to plastically express alternative phenotypes may, however, interfere with the early phase of the formation of reproductive barriers, especially in the absence of geographic barriers. Here, we quantitatively investigate mechanisms under which plasticity can influence progress toward adaptive genetic diversification and ecological speciation. We use a stochastic, individual-based model of a predator-prey system incorporating sexual reproduction and mate choice in the predator. Our results show that evolving plasticity promotes the evolution of reproductive isolation under diversifying environments when individuals are able to correctly select a more profitable habitat with respect to their phenotypes (i.e., adaptive habitat choice) and to assortatively mate with relatively similar phenotypes. On the other hand, plasticity facilitates the evolution of plastic generalists when individuals have a limited capacity for adaptive habitat choice. We conclude that plasticity can accelerate the evolution of a reproductive barrier toward adaptive diversification and ecological speciation through enhanced phenotypic differentiation between diverging phenotypes.


Assuntos
Evolução Biológica , Especiação Genética , Fenótipo , Isolamento Reprodutivo , Animais , Ecossistema , Modelos Genéticos
5.
Ecol Lett ; 16(8): 1004-13, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23782866

RESUMO

Non-random mating provides multiple evolutionary benefits and can result in speciation. Biological organisms are characterised by a myriad of different traits, many of which can serve as mating cues. We consider multiple mechanisms of non-random mating simultaneously within a unified modelling framework in an attempt to understand better which are more likely to evolve in natural populations going through the process of local adaptation and ecological speciation. We show that certain traits that are under direct natural selection are more likely to be co-opted as mating cues, leading to the appearance of magic traits (i.e. phenotypic traits involved in both local adaptation and mating decisions). Multiple mechanisms of non-random mating can interact so that trait co-evolution enables the evolution of non-random mating mechanisms that would not evolve alone. The presence of magic traits may suggest that ecological selection was acting during the origin of new species.


Assuntos
Evolução Biológica , Preferência de Acasalamento Animal , Seleção Genética , Adaptação Biológica , Animais , Simulação por Computador , Especiação Genética , Modelos Biológicos , Processos Estocásticos
6.
Mol Ecol ; 19(11): 2301-14, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20465581

RESUMO

It is not yet clear under what conditions empirical studies can reliably detect progress toward ecological speciation through the analysis of allelic variation at neutral loci. We use a simulation approach to investigate the range of parameter space under which such detection is, and is not, likely. We specifically test for the conditions under which divergent natural selection can cause a 'generalized barrier to gene flow' that is present across the genome. Our individual-based numerical simulations focus on how population divergence at neutral loci varies in relation to recombination rate with a selected locus, divergent selection on that locus, migration rate and population size. We specifically test whether genetic differences at neutral markers are greater between populations in different environments than between populations in similar environments. We find that this expected signature of ecological speciation can be detected under part of the parameter space, most consistently when divergent selection is strong and migration is intermediate. By contrast, the expected signature of ecological speciation is not reliably detected when divergent selection is weak or migration is low or high. These findings provide insights into the strengths and weaknesses of using neutral markers to infer ecological speciation in natural systems.


Assuntos
Fluxo Gênico , Especiação Genética , Genética Populacional , Modelos Genéticos , Seleção Genética , Simulação por Computador , Ecologia/métodos , Meio Ambiente , Aptidão Genética , Variação Genética , Densidade Demográfica
7.
Mol Ecol ; 17(14): 3337-51, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18564083

RESUMO

We here employ 11 microsatellite markers and recently developed litter reconstruction methods to infer mating system parameters (i.e. polyandry and breeding-site fidelity) at a lemon shark nursery site in Marquesas Key, Florida. Four hundred and eight juvenile or subadult sharks were genotyped over eight complete breeding seasons. Using this information, we were able to infer family structure, as well as fully or partially reconstruct genotypes of 46 mothers and 163 fathers. Multiple litter reconstruction methods were used, and novel simulations helped define apparent bias and precision of at least some mating system parameters. For Marquesas Key, we find that adult female lemon sharks display high levels of polyandry (81% of all litters sampled) and stronger fidelity to the nursery site than do males. Indeed, few male sharks sired offspring from more than one litter during the course of the study. These findings were quite similar to previous results from another lemon shark nursery site (Bimini, Bahamas), suggesting conserved mating system parameters despite significant variation in early life-history traits (i.e. body size and growth) among sites. The finding of at least some site fidelity in females also supports the need for careful conservation of each nursery.


Assuntos
Comportamento Sexual Animal/fisiologia , Tubarões/fisiologia , Animais , Cruzamento , Feminino , Florida , Masculino , Repetições de Microssatélites/genética , Reprodução/genética , Reprodução/fisiologia , Tubarões/genética
8.
Evol Comput ; 15(3): 321-44, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17705781

RESUMO

We examine the role played by crossover in a series of genetic algorithm-based evolutionary simulations of the iterated prisoner's dilemma. The simulations are characterized by extended periods of stability, during which evolutionarily meta-stable strategies remain more or less fixed in the population, interrupted by transient, unstable episodes triggered by the appearance of adaptively targeted predators. This leads to a global evolutionary pattern whereby the population shifts from one of a few evolutionarily metastable strategies to another to evade emerging predator strategies. While crossover is not particularly helpful in producing better average scores, it markedly enhances overall evolutionary stability. We show that crossover achieves this by (1) impeding the appearance and spread of targeted predator strategies during stable phases, and (2) greatly reducing the duration of unstable epochs, presumably by efficient recombination of building blocks to rediscover prior metastable strategies. We also speculate that during stable phases, crossover's operation on the persistently heterogeneous gene pool enhances the survival of useful building blocks, thus sustaining long-range temporal correlations in the evolving population. Empirical support for this conjecture is found in the extended tails of probability distribution functions for stable phase lifetimes.


Assuntos
Evolução Biológica , Teoria dos Jogos , Algoritmos , Animais , Simulação por Computador , Comportamento Cooperativo , Humanos , Modelos Genéticos , Modelos Estatísticos , Modelos Teóricos , Dinâmica Populacional , Probabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...