Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Commun ; : 100984, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38845198

RESUMO

The soybean root system is complex. In addition to being composed of various cell types, the soybean root system includes the primary root, the lateral roots, and the nodule, an organ in which mutualistic symbiosis with N-fixing rhizobia occurs. A mature soybean root nodule is characterized by a central infection zone where atmospheric nitrogen is fixed and assimilated by the symbiont, resulting from the close cooperation between the plant cell and the bacteria. To date, the transcriptome of individual cells isolated from developing soybean nodules has been established, but the transcriptomic signatures of cells from the mature soybean nodule have not yet been characterized. Using single-nucleus RNA-seq and Molecular Cartography technologies, we precisely characterized the transcriptomic signature of soybean root and mature nodule cell types and revealed the co-existence of different sub-populations of B. diazoefficiens-infected cells in the mature soybean nodule, including those actively involved in nitrogen fixation and those engaged in senescence. Mining of the single-cell-resolution nodule transcriptome atlas and the associated gene co-expression network confirmed the role of known nodulation-related genes and identified new genes that control the nodulation process. For instance, we functionally characterized the role of GmFWL3, a plasma membrane microdomain-associated protein that controls rhizobial infection. Our study reveals the unique cellular complexity of the mature soybean nodule and helps redefine the concept of cell types when considering the infection zone of the soybean nodule.

3.
Methods Mol Biol ; 2584: 165-181, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36495448

RESUMO

Single-cell transcriptomics technologies allow researchers to investigate how individual cells, in complex multicellular organisms, differentially use their common genomic DNA. In plant biology, these technologies were recently applied to reveal the transcriptomes of various plant cells isolated from different organs and different species and in response to environmental stresses. These first studies support the potential of single-cell transcriptomics technology to decipher the biological function of plant cells, their developmental programs, cell-type-specific gene networks, programs controlling plant cell response to environmental stresses, etc. In this chapter, we provide information regarding the critical steps and important information to consider when developing an experimental design in plant single-cell biology. We also describe the current status of bioinformatics tools used to analyze single-cell RNA-seq datasets and how additional emerging technologies such as spatial transcriptomics and long-read sequencing technologies will provide additional information on the differential use of the genome by plant cells.


Assuntos
Biologia Computacional , Perfilação da Expressão Gênica , Análise de Sequência de RNA , RNA-Seq , Transcriptoma , Fluxo de Trabalho , Plantas/genética
4.
Mol Plant ; 15(12): 1868-1888, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36321199

RESUMO

Medicago truncatula is a model legume species that has been studied for decades to understand the symbiotic relationship between legumes and soil bacteria collectively named rhizobia. This symbiosis called nodulation is initiated in roots with the infection of root hair cells by the bacteria, as well as the initiation of nodule primordia from root cortical, endodermal, and pericycle cells, leading to the development of a new root organ, the nodule, where bacteria fix and assimilate the atmospheric dinitrogen for the benefit of the plant. Here, we report the isolation and use of the nuclei from mock and rhizobia-inoculated roots for the single nuclei RNA-seq (sNucRNA-seq) profiling to gain a deeper understanding of early responses to rhizobial infection in Medicago roots. A gene expression map of the Medicago root was generated, comprising 25 clusters, which were annotated as specific cell types using 119 Medicago marker genes and orthologs to Arabidopsis cell-type marker genes. A focus on root hair, cortex, endodermis, and pericycle cell types, showing the strongest differential regulation in response to a short-term (48 h) rhizobium inoculation, revealed not only known genes and functional pathways, validating the sNucRNA-seq approach, but also numerous novel genes and pathways, allowing a comprehensive analysis of early root symbiotic responses at a cell type-specific level.


Assuntos
Medicago truncatula , Medicago truncatula/genética
5.
PLoS One ; 17(2): e0263869, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35176067

RESUMO

The pig skin architecture and physiology are similar to those of humans. Thus, the pig model is very valuable for studying skin biology and testing therapeutics. The single-cell RNA sequencing (scRNA-seq) technology allows quantitatively analyzing cell types, compositions, states, signaling, and receptor-ligand interactome at single-cell resolution and at high throughput. scRNA-seq has been used to study mouse and human skins. However, studying pig skin with scRNA-seq is still rare. A critical step for successful scRNA-seq is to obtain high-quality single cells from the pig skin tissue. Here we report a robust method for isolating and cryopreserving pig skin single cells for scRNA-seq. We showed that pig skin could be efficiently dissociated into single cells with high cell viability using the Miltenyi Human Whole Skin Dissociation kit and the Miltenyi gentleMACS Dissociator. Furthermore, the obtained single cells could be cryopreserved using 90% FBS + 10% DMSO without causing additional cell death, cell aggregation, or changes in gene expression profiles. Using the developed protocol, we were able to identify all the major skin cell types. The protocol and results from this study are valuable for the skin research scientific community.


Assuntos
Criopreservação/métodos , Análise de Célula Única/métodos , Pele/citologia , Pele/metabolismo , Manejo de Espécimes/métodos , Transcriptoma , Animais , Perfilação da Expressão Gênica , Suínos , Sequenciamento do Exoma
6.
Front Plant Sci ; 12: 696811, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421948

RESUMO

Plants are composed of cells that physically interact and constantly adapt to their environment. To reveal the contribution of each plant cells to the biology of the entire organism, their molecular, morphological, and physiological attributes must be quantified and analyzed in the context of the morphology of the plant organs. The emergence of single-cell/nucleus omics technologies now allows plant biologists to access different modalities of individual cells including their epigenome and transcriptome to reveal the unique molecular properties of each cell composing the plant and their dynamic regulation during cell differentiation and in response to their environment. In this manuscript, we provide a perspective regarding the challenges and strategies to collect plant single-cell biological datasets and their analysis in the context of cellular interactions. As an example, we provide an analysis of the transcriptional regulation of the Arabidopsis genes controlling the differentiation of the root hair cells at the single-cell level. We also discuss the perspective of the use of spatial profiling to complement existing plant single-cell omics.

7.
Front Plant Sci ; 12: 640930, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34434200

RESUMO

Efficient conversion of lignocellulosic biomass into biofuels is influenced by biomass composition and structure. Lignin and other cell wall phenylpropanoids, such as para-coumaric acid (pCA) and ferulic acid (FA), reduce cell wall sugar accessibility and hamper biochemical fuel production. Toward identifying the timing and key parameters of cell wall recalcitrance across different switchgrass genotypes, this study measured cell wall composition and lignin biosynthesis gene expression in three switchgrass genotypes, A4 and AP13, representing the lowland ecotype, and VS16, representing the upland ecotype, at three developmental stages [Vegetative 3 (V3), Elongation 4 (E4), and Reproductive 3 (R3)] and three segments (S1-S3) of the E4 stage under greenhouse conditions. A decrease in cell wall digestibility and an increase in phenylpropanoids occur across development. Compared with AP13 and A4, VS16 has significantly less lignin and greater cell wall digestibility at the V3 and E4 stages; however, differences among genotypes diminish by the R3 stage. Gini correlation analysis across all genotypes revealed that lignin and pCA, but also pectin monosaccharide components, show the greatest negative correlations with digestibility. Lignin and pCA accumulation is delayed compared with expression of phenylpropanoid biosynthesis genes, while FA accumulation coincides with expression of these genes. The different cell wall component accumulation profiles and gene expression correlations may have implications for system biology approaches to identify additional gene products with cell wall component synthesis and regulation functions.

9.
Mol Plant ; 14(3): 372-383, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33422696

RESUMO

Similar to other complex organisms, plants consist of diverse and specialized cell types. The gain of unique biological functions of these different cell types is the consequence of the establishment of cell-type-specific transcriptional programs. As a necessary step in gaining a deeper understanding of the regulatory mechanisms controlling plant gene expression, we report the use of single-nucleus RNA sequencing (sNucRNA-seq) and single-nucleus assay for transposase accessible chromatin sequencing (sNucATAC-seq) technologies on Arabidopsis roots. The comparison of our single-nucleus transcriptomes to the published protoplast transcriptomes validated the use of nuclei as biological entities to establish plant cell-type-specific transcriptomes. Furthermore, our sNucRNA-seq results uncovered the transcriptomes of additional cell subtypes not identified by single-cell RNA-seq. Similar to our transcriptomic approach, the sNucATAC-seq approach led to the distribution of the Arabidopsis nuclei into distinct clusters, suggesting the differential accessibility of chromatin between groups of cells according to their identity. To reveal the impact of chromatin accessibility on gene expression, we integrated sNucRNA-seq and sNucATAC-seq data and demonstrated that cell-type-specific marker genes display cell-type-specific patterns of chromatin accessibility. Our data suggest that the differential chromatin accessibility is a critical mechanism to regulate gene activity at the cell-type level.


Assuntos
Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Raízes de Plantas/metabolismo , RNA-Seq , Transcriptoma/genética
10.
Bio Protoc ; 11(23): e4240, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-35005085

RESUMO

Gene expression depends on the binding of transcription factors with DNA regulatory sequences. The level of accessibility for these sequences varies between cells and cell types. Until recently, using the Tn5 assay for transposase-accessible chromatin for sequencing (ATAC-seq) technology allowed assessing the profiles of chromatin from an entire organ or, when coupled with the isolation of nuclei tagged in specific cell types (INTACT) method, from a cell-type. Recently, ATAC-seq experiments were conducted at the level of individual plant nuclei. Applying single nuclei ATAC-seq (sNucATAC-seq) technology to thousands of individual cells revealed more finely tuned profiles of chromatin accessibility. In this manuscript, we describe a method to isolate nuclei fom plant roots and green tissues, permeabilize the nuclear membrane using detergent to allow the penetration of the Tn5 transposase, and re-suspend them in a nuclei resuspension buffer compatible with the construction of sNucATAC-seq libraries using the 10× Genomic's Chromium technology. This protocol was successfully applied on Arabidopsis thaliana and Glycine max root nuclei.

11.
Curr Protoc Plant Biol ; 5(4): e20120, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33034428

RESUMO

The characterization of the transcriptional similarities and differences existing between plant cells and cell types is important to better understand the biology of each cell composing the plant, to reveal new molecular mechanisms controlling gene activity, and to ultimately implement meaningful strategies to enhance plant cell biology. To gain a deeper understanding of the regulation of plant gene activity, the individual transcriptome of each plant cell needs to be established. Until recently, single cell approaches were mostly limited to bulk transcriptomic studies on selected cell types. Accessing specific cell types required the development of labor-intensive strategies. Recently, single cell sequencing strategies were successfully applied on isolated Arabidopsis thaliana root protoplasts. However, this strategy relies on the successful isolation of viable protoplasts upon the optimization of the enzymatic cocktails required to digest the cell wall and on the compatibility of fragile plant protoplasts with the use of microfluidic systems to generate single cell transcriptomic libraries. To overcome these difficulties, we present a simple and fast alternative strategy: the isolation and use of plant nuclei to access meaningful transcriptomic information from plant cells. This protocol was specifically developed to enable the use of the plant nuclei with 10× Genomics' Chromium technology partitions technology. Briefly, the plant nuclei are released from the root by chopping into a nuclei isolation buffer before purification by filtration then nuclei sorting. Upon sorting, the nuclei are resuspended in a low divalent ion buffer compatible with the Chromium technology in order to create single nuclei ribonucleic acid-sequencing libraries (sNucRNA-seq). © 2020 Wiley Periodicals LLC. Basic Protocol 1: Arabidopsis seed sterilization and planting Basic Protocol 2: Nuclei isolation from Arabidopsis roots Basic Protocol 3: Fluorescent-activated nuclei sorting (FANS) purification Support Protocol: Estimation of nuclei density using Countess II automated cell counter Alternate Protocol 1: Proper growth conditions for Medicago truncatula and Sorghum bicolor Alternate Protocol 2: Estimation of nuclei density using sNucRNA-seq technology.


Assuntos
Arabidopsis , Núcleo Celular , Arabidopsis/genética , Raízes de Plantas , Protoplastos , Análise de Sequência de RNA
12.
Plants (Basel) ; 9(3)2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32204387

RESUMO

Membrane microdomains/nanodomains are sub-compartments of the plasma membrane enriched in sphingolipids and characterized by their unique protein composition. They play important roles in regulating plant development and plant-microbe interactions including mutualistic symbiotic interactions. Several protein families are associated with the microdomain fraction of biological membranes such as flotillins, prohibitins, and remorins. More recently, GmFWL1, a FWL/CNR protein exclusively expressed in the soybean nodule, was functionally characterized as a new microdomain-associated protein. Interestingly, GmFWL1 is homologous to the tomato FW2-2 protein, a major regulator of tomato fruit development. In this review, we summarize the knowledge gained about the biological, cellular, and physiological functions of members of the FWL/CNR family across various plant species. The role of the FWL/CNR proteins is also discussed within the scope of their evolution and transcriptional regulation.

13.
BMC Cancer ; 19(1): 423, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-31060542

RESUMO

BACKGROUND: The clinical behavior of prostate cancer (PCa) is variable, and while the majority of cases remain indolent, 10% of patients progress to deadly forms of the disease. Current clinical predictors used at the time of diagnosis have limitations to accurately establish progression risk. Here we describe the development of a tumor suppressor regulated, cell-cycle gene expression based prognostic signature for PCa, and validate its independent contribution to risk stratification in several radical prostatectomy (RP) patient cohorts. METHODS: We used RNA interference experiments in PCa cell lines to identify a gene expression based gene signature associated with Tmeff2, an androgen regulated, tumor suppressor gene whose expression shows remarkable heterogeneity in PCa. Gene expression was confirmed by qRT-PCR. Correlation of the signature with disease outcome (time to recurrence) was retrospectively evaluated in four geographically different cohorts of patients that underwent RP (834 samples), using multivariate logistical regression analysis. Multivariate analyses were adjusted for standard clinicopathological variables. Performance of the signature was compared to previously described gene expression based signatures using the SigCheck software. RESULTS: Low levels of TMEFF2 mRNA significantly (p < 0.0001) correlated with reduced disease-free survival (DFS) in patients from the Memorial Sloan Kettering Cancer Center (MSKCC) dataset. We identified a panel of 11 TMEFF2 regulated cell cycle related genes (TMCC11), with strong prognostic value. TMCC11 expression was significantly associated with time to recurrence after prostatectomy in four geographically different patient cohorts (2.9 ≤ HR ≥ 4.1; p ≤ 0.002), served as an independent indicator of poor prognosis in the four RP cohorts (1.96 ≤ HR ≥ 4.28; p ≤ 0.032) and improved the prognostic value of standard clinicopathological markers. The prognostic ability of TMCC11 panel exceeded previously published oncogenic gene signatures (p = 0.00017). CONCLUSIONS: This study provides evidence that the TMCC11 gene signature is a robust independent prognostic marker for PCa, reveals the value of using highly heterogeneously expressed genes, like Tmeff2, as guides to discover prognostic indicators, and suggests the possibility that low Tmeff2 expression marks a distinct subclass of PCa.


Assuntos
Biomarcadores Tumorais/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Recidiva Local de Neoplasia/diagnóstico , Neoplasias da Próstata/diagnóstico , Transcriptoma , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Conjuntos de Dados como Assunto , Progressão da Doença , Intervalo Livre de Doença , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/mortalidade , Recidiva Local de Neoplasia/cirurgia , Valor Preditivo dos Testes , Prognóstico , Próstata/patologia , Próstata/cirurgia , Prostatectomia , Neoplasias da Próstata/genética , Neoplasias da Próstata/mortalidade , Neoplasias da Próstata/cirurgia , RNA Mensageiro/metabolismo , Estudos Retrospectivos
14.
Science ; 341(6152): 1384-7, 2013 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-24009356

RESUMO

Virtually since the discovery of nitrogen-fixing Rhizobium-legume symbioses, researchers have dreamed of transferring this capability into nonlegume crop species (for example, corn). In general, nonlegumes were assumed to lack the ability to respond to the rhizobial lipo-chitin Nod factors, which are the essential signal molecules that trigger legume nodulation. However, our data indicate that Arabidopsis thaliana plants, as well as other nonlegumes, recognize the rhizobial Nod factor via a mechanism that results in strong suppression of microbe-associated molecular pattern (MAMP)-triggered immunity. The mechanism of action leads to reduced levels of pattern-recognition receptors on the plasma membrane involved in MAMP recognition.


Assuntos
Arabidopsis/imunologia , Arabidopsis/microbiologia , Imunidade Inata/imunologia , Lipopolissacarídeos/imunologia , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Flagelina/imunologia , Imunidade Inata/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Fixação de Nitrogênio/genética , Oligossacarídeos/imunologia , Oligossacarídeos/farmacologia , Proteínas Quinases/metabolismo , Proteólise , Receptores de Reconhecimento de Padrão/metabolismo , Glycine max/imunologia , Glycine max/microbiologia , Simbiose
15.
Plant Physiol ; 157(4): 1975-86, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21963820

RESUMO

Microbe-associated molecular pattern-triggered immunity (MTI) is an important component of the plant innate immunity response to invading pathogens. However, most of our knowledge of MTI comes from studies of model systems with relatively little work done with crop plants. In this work, we report on variation in both the microbe-associated molecular pattern-triggered oxidative burst and gene expression across four soybean (Glycine max) genotypes. Variation in MTI correlated with the level of pathogen resistance for each genotype. A quantitative trait locus analysis on these traits identified four loci that appeared to regulate gene expression during MTI in soybean. Likewise, we observed that both MTI variation and pathogen resistance were quantitatively inherited. The approach utilized in this study may have utility for identifying key resistance loci useful for developing improved soybean cultivars.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Glycine max/genética , Glycine max/imunologia , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Locos de Características Quantitativas/imunologia , Ascomicetos/patogenicidade , Perfilação da Expressão Gênica , Genótipo , Interações Hospedeiro-Patógeno , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Pseudomonas syringae/patogenicidade , RNA de Plantas/genética , Receptores de Reconhecimento de Padrão/metabolismo , Explosão Respiratória , Glycine max/microbiologia
16.
BMC Plant Biol ; 9: 46, 2009 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-19397807

RESUMO

BACKGROUND: Phaseolus vulgaris (common bean) is the second most important legume crop in the world after soybean. Consequently, yield losses due to fungal infection, like Uromyces appendiculatus (bean rust), have strong consequences. Several resistant genes were identified that confer resistance to bean rust infection. However, the downstream genes and mechanisms involved in bean resistance to infection are poorly characterized. RESULTS: A subtractive bean cDNA library composed of 10,581 unisequences was constructed and enriched in sequences regulated by either bean rust race 41, a virulent strain, or race 49, an avirulent strain on cultivar Early Gallatin carrying the resistance gene Ur-4. The construction of this library allowed the identification of 6,202 new bean ESTs, significantly adding to the available sequences for this plant. Regulation of selected bean genes in response to bean rust infection was confirmed by qRT-PCR. Plant gene expression was similar for both race 41 and 49 during the first 48 hours of the infection process but varied significantly at the later time points (72-96 hours after inoculation) mainly due to the presence of the Avr4 gene in the race 49 leading to a hypersensitive response in the bean plants. A biphasic pattern of gene expression was observed for several genes regulated in response to fungal infection. CONCLUSION: The enrichment of the public database with over 6,000 bean ESTs significantly adds to the genomic resources available for this important crop plant. The analysis of these genes in response to bean rust infection provides a foundation for further studies of the mechanism of fungal disease resistance. The expression pattern of 90 bean genes upon rust infection shares several features with other legumes infected by biotrophic fungi. This finding suggests that the P. vulgaris-U. appendiculatus pathosystem could serve as a model to explore legume-rust interaction.


Assuntos
Basidiomycota/patogenicidade , Etiquetas de Sequências Expressas , Phaseolus/genética , Doenças das Plantas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Genes de Plantas , Phaseolus/microbiologia , RNA de Plantas/genética , Análise de Sequência de DNA
17.
Mol Cell Proteomics ; 8(1): 19-31, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18755735

RESUMO

Plants appear to have two types of active defenses, a broad-spectrum basal system and a system controlled by R-genes providing stronger resistance to some pathogens that break the basal defense. However, it is unknown if the systems are separate entities. Therefore, we analyzed proteins from leaves of the dry bean crop plant Phaseolus vulgaris using a high-throughput liquid chromatography tandem mass spectrometry method. By statistically comparing the amounts of proteins detected in a single plant variety that is susceptible or resistant to infection, depending on the strains of a rust fungus introduced, we defined basal and R-gene-mediated plant defenses at the proteomic level. The data reveal that some basal defense proteins are potential regulators of a strong defense weakened by the fungus and that the R-gene modulates proteins similar to those in the basal system. The results satisfy a new model whereby R-genes are part of the basal system and repair disabled defenses to reinstate strong resistance.


Assuntos
Basidiomycota/fisiologia , Basidiomycota/patogenicidade , Phaseolus/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/análise , Proteoma/análise , Proteômica , Regulação da Expressão Gênica de Plantas , Imunidade Inata , Modelos Biológicos , Phaseolus/genética , Phaseolus/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Folhas de Planta/genética , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Virulência
18.
Plant Cell Environ ; 30(2): 187-201, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17238910

RESUMO

During infestation, phloem-feeding insects induce transcriptional reprogramming in plants that may lead to protection. Transcripts of the celery XTH1 gene, encoding a xyloglucan endotransglycosylase/hydrolase (XTH), were previously found to accumulate systemically in celery (Apium graveolens) phloem, following infestation with the generalist aphid Myzus persicae. XTH1 induction was specific to the phloem but was not correlated with an increase in xyloglucan endotransglycosylase (XET) activity in the phloem. XTH1 is homologous to the Arabidopsis thaliana XTH33 gene. XTH33 expression was investigated following M. persicae infestation. The pattern of XTH33 expression is tightly controlled during development and indicates a possible role in cell expansion. An xth33 mutant was assayed for preference assay with M. persicae. Aphids settled preferentially on the mutant rather than on the wild type. This suggests that XTH33 is involved in protecting plants against aphids; therefore, that cell wall modification can alter the preference of aphids for a particular plant. Nevertheless, the ectopic expression of XTH33 in phloem tissue was not sufficient to confer protection, demonstrating that modifying the expression of this single gene does not readily alter plant-aphid interactions.


Assuntos
Afídeos/fisiologia , Apium/enzimologia , Arabidopsis/enzimologia , Glicosiltransferases/metabolismo , Floema/metabolismo , Animais , Apium/genética , Apium/parasitologia , Arabidopsis/genética , Arabidopsis/parasitologia , Regulação da Expressão Gênica de Plantas , Glicosiltransferases/genética , Interações Hospedeiro-Parasita/fisiologia , Mutagênese Insercional , Floema/parasitologia , Folhas de Planta/enzimologia , Folhas de Planta/parasitologia , Plantas Geneticamente Modificadas , Transcrição Gênica , Regulação para Cima
19.
Plant Mol Biol ; 57(4): 517-40, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15821978

RESUMO

Little is known about the molecular processes involved in the phloem response to aphid feeding. We investigated molecular responses to aphid feeding on celery (Apium graveolenscv. Dulce) plants infested with the aphid Myzus persicae, as a means of identifying changes in phloem function. We used celery as our model species as it is easy to separate the phloem from the surrounding tissues in the petioles of mature leaves of this species. We generated a total of 1187 expressed sequence tags (ESTs), corresponding to 891 non-redundant genes. We analysed these ESTs in silico after cDNA macroarray hybridisation. Aphid feeding led to significant increase in RNA accumulation for 126 different genes. Different patterns of deregulation were observed, including transitory or stable induction 3 or 7 days after infestation. The genes affected belonged to various functional categories and were induced systemically in the phloem after infestation. In particular, genes involved in cell wall modification, water transport, vitamin biosynthesis, photosynthesis, carbon assimilation and nitrogen and carbon mobilisation were up-regulated in the phloem. Further analysis of the response in the phloem or xylem suggested that a component of the response was developed more specifically in the phloem. However, this component was different from the stress responses in the phloem driven by pathogen infection. Our results indicate that the phloem is actively involved in multiple adjustments, recruiting metabolic pathways and in structural changes far from aphid feeding sites. However, they also suggest that the phloem displays specific mechanisms that may not be induced in other tissues.


Assuntos
Afídeos/crescimento & desenvolvimento , Apium/genética , Perfilação da Expressão Gênica , Estruturas Vegetais/genética , Animais , Apium/parasitologia , Análise por Conglomerados , DNA Complementar/química , DNA Complementar/genética , Etiquetas de Sequências Expressas , Regulação da Expressão Gênica de Plantas/genética , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Estruturas Vegetais/parasitologia , Análise de Sequência de DNA , Transcrição Gênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...