Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JACS Au ; 3(2): 429-440, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36873706

RESUMO

A comprehensive understanding of the ligand field and its influence on the degeneracy and population of d-orbitals in a specific coordination environment are crucial for the rational design and enhancement of magnetic anisotropy of single-ion magnets (SIMs). Herein, we report the synthesis and comprehensive magnetic characterization of a highly anisotropic CoII SIM, [L2Co](TBA)2 (L is an N,N'-chelating oxanilido ligand), that is stable under ambient conditions. Dynamic magnetization measurements show that this SIM exhibits a large energy barrier to spin reversal U eff > 300 K and magnetic blocking up to 3.5 K, and the property is retained in a frozen solution. Low-temperature single-crystal synchrotron X-ray diffraction used to determine the experimental electron density gave access to Co d-orbital populations and a derived U eff, 261 cm-1, when the coupling between the d x 2 - y 2 and dxy orbitals is taken into account, in very good agreement with ab initio calculations and superconducting quantum interference device results. Powder and single-crystal polarized neutron diffraction (PNPD, PND) have been used to quantify the magnetic anisotropy via the atomic susceptibility tensor, revealing that the easy axis of magnetization is pointing along the N-Co-N' bisectors of the N,N'-chelating ligands (3.4° offset), close to the molecular axis, in good agreement with complete active space self-consistent field/N-electron valence perturbation theory to second order ab initio calculations. This study provides benchmarking for two methods, PNPD and single-crystal PND, on the same 3d SIM, and key benchmarking for current theoretical methods to determine local magnetic anisotropy parameters.

2.
Chem Commun (Camb) ; 59(18): 2656-2659, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36780133

RESUMO

The effects of external pressure on a high-performing dysprosocenium single-molecule magnet are investigated using a combination of X-ray diffraction, magnetometry and theoretical calculations. The effective energy barrier (Ueff) decreases from ca. 1300 cm-1 at ambient pressure to ca. 1125 cm-1 at 3 GPa. Our results indicate that compression < 1.2 GPa has a negligible effect on the Orbach process, but magnetic relaxation > 1 GPa increases via Raman relaxation and/or quantum tunnelling of magnetisation.

3.
Dalton Trans ; 50(40): 14207-14215, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34550149

RESUMO

We present the magnetic anisotropy of two isostructural pentagonal-bipyramidal complexes, [Ln(H2O)5(HMPA)2]I3·2HMPA (HMPA = hexamethylphosphoramide, Ln = Dy, Ho). Using ac magnetic susceptibility measurements, we find magnetic relaxation barriers of 600 K and 270 K for the Dy- and Ho-compounds, respectively. This difference is supported by polarized neutron diffraction (PND) measured at 5 K and 1 T which provides the first experimental evidence that the transverse elements in the magnetic anisotropy of the Ho-analogue are significant, whereas the Dy-analogue has a near-axial magnetic anisotropy with vanishing transverse contributions. The coordination geometries of the two complexes are highly similar, and we attribute the loss of strong magnetic axiality as expressed in the atomic susceptibility tensors from PND, as well as the smaller relaxation barrier in the Ho-complex compared to the Dy-complex, to the less favorable interaction of the pentagonal bipyramidal crystal field with the characteristics of the Ho(III) 4f-charge distribution.

4.
Inorg Chem ; 59(3): 1682-1691, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-31944683

RESUMO

Single-molecule magnet materials owe their function to the presence of significant magnetic anisotropy, which arises from the interplay between the ligand field and spin-orbit coupling, and this is responsible for setting up an energy barrier for magnetic relaxation. Therefore, chemical control of magnetic anisotropy is a central challenge in the quest to synthesize new molecular nanomagnets with improved properties. There have been several reports of design principles targeting such control; however, these principles rely on idealized geometries, which are rarely obtained in crystal structures. Here, we present the results of high-pressure single-crystal diffraction on the single-ion magnet, Co(SPh)4(PPh4)2, in the pressure range of 0-9.2 GPa. Upon pressurization a sequence of small geometrical distortions of the central CoS4 moeity are observed, enabling a thorough analysis of the magneto-structural correlations. The magneto-structural correlations are investigated by theoretical analyses of the pressure-dependent experimental molecular structures. We observed a significant increase in the magnitude of the zero-field splitting parameter D, from -54.6 cm-1 to -89.7 cm-1, which was clearly explained from the reduction of the energy difference between the essential dxy and dx2-y2 orbitals, and structurally assigned to the change of an angle of compression of the CoS4 moeity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...