Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Life Rev ; 46: 220-244, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37499620

RESUMO

Psychology and neuroscience are concerned with the study of behavior, of internal cognitive processes, and their neural foundations. However, most laboratory studies use constrained experimental settings that greatly limit the range of behaviors that can be expressed. While focusing on restricted settings ensures methodological control, it risks impoverishing the object of study: by restricting behavior, we might miss key aspects of cognitive and neural functions. In this article, we argue that psychology and neuroscience should increasingly adopt innovative experimental designs, measurement methods, analysis techniques and sophisticated computational models to probe rich, ecologically valid forms of behavior, including social behavior. We discuss the challenges of studying rich forms of behavior as well as the novel opportunities offered by state-of-the-art methodologies and new sensing technologies, and we highlight the importance of developing sophisticated formal models. We exemplify our arguments by reviewing some recent streams of research in psychology, neuroscience and other fields (e.g., sports analytics, ethology and robotics) that have addressed rich forms of behavior in a model-based manner. We hope that these "success cases" will encourage psychologists and neuroscientists to extend their toolbox of techniques with sophisticated behavioral models - and to use them to study rich forms of behavior as well as the cognitive and neural processes that they engage.


Assuntos
Neurociências , Projetos de Pesquisa , Comportamento Social , Etologia/métodos , Neurociências/métodos , Dissidências e Disputas
2.
Neurosci Biobehav Rev ; 131: 722-736, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34563562

RESUMO

Most current decision-making research focuses on classical economic scenarios, where choice offers are prespecified and where action dynamics play no role in the decision. However, our brains evolved to deal with different choice situations: "embodied decisions". As examples of embodied decisions, consider a lion that has to decide which gazelle to chase in the savannah or a person who has to select the next stone to jump on when crossing a river. Embodied decision settings raise novel questions, such as how people select from time-varying choice options and how they track the most relevant choice attributes; but they have long remained challenging to study empirically. Here, we summarize recent progress in the study of embodied decisions in sports analytics and experimental psychology. Furthermore, we introduce a formal methodology to identify the relevant dimensions of embodied choices (present and future affordances) and to map them into the attributes of classical economic decisions (probabilities and utilities), hence aligning them. Studying embodied decisions will greatly expand our understanding of what decision-making is.


Assuntos
Encéfalo , Tomada de Decisões , Humanos
3.
PLoS Biol ; 18(12): e3000864, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33301439

RESUMO

How do we choose a particular action among equally valid alternatives? Nonhuman primate findings have shown that decision-making implicates modulations in unit firing rates and local field potentials (LFPs) across frontal and parietal cortices. Yet the electrophysiological brain mechanisms that underlie free choice in humans remain ill defined. Here, we address this question using rare intracerebral electroencephalography (EEG) recordings in surgical epilepsy patients performing a delayed oculomotor decision task. We find that the temporal dynamics of high-gamma (HG, 60-140 Hz) neural activity in distinct frontal and parietal brain areas robustly discriminate free choice from instructed saccade planning at the level of single trials. Classification analysis was applied to the LFP signals to isolate decision-related activity from sensory and motor planning processes. Compared with instructed saccades, free-choice trials exhibited delayed and longer-lasting HG activity during the delay period. The temporal dynamics of the decision-specific sustained HG activity indexed the unfolding of a deliberation process, rather than memory maintenance. Taken together, these findings provide the first direct electrophysiological evidence in humans for the role of sustained high-frequency neural activation in frontoparietal cortex in mediating the intrinsically driven process of freely choosing among competing behavioral alternatives.


Assuntos
Comportamento de Escolha/fisiologia , Tomada de Decisões/fisiologia , Eletroencefalografia/métodos , Adulto , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Córtex Cerebral/fisiologia , Feminino , Lobo Frontal/fisiologia , Ritmo Gama/fisiologia , Humanos , Masculino , Neurônios/fisiologia , Lobo Parietal/fisiologia , Autonomia Pessoal , Estimulação Luminosa , Desempenho Psicomotor/fisiologia , Movimentos Sacádicos/fisiologia
5.
Front Neuroinform ; 13: 14, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30967769

RESUMO

We present Visbrain, a Python open-source package that offers a comprehensive visualization suite for neuroimaging and electrophysiological brain data. Visbrain consists of two levels of abstraction: (1) objects which represent highly configurable neuro-oriented visual primitives (3D brain, sources connectivity, etc.) and (2) graphical user interfaces for higher level interactions. The object level offers flexible and modular tools to produce and automate the production of figures using an approach similar to that of Matplotlib with subplots. The second level visually connects these objects by controlling properties and interactions through graphical interfaces. The current release of Visbrain (version 0.4.2) contains 14 different objects and three responsive graphical user interfaces, built with PyQt: Signal, for the inspection of time-series and spectral properties, Brain for any type of visualization involving a 3D brain and Sleep for polysomnographic data visualization and sleep analysis. Each module has been developed in tight collaboration with end-users, i.e., primarily neuroscientists and domain experts, who bring their experience to make Visbrain as transparent as possible to the recording modalities (e.g., intracranial EEG, scalp-EEG, MEG, anatomical and functional MRI). Visbrain is developed on top of VisPy, a Python package providing high-performance 2D and 3D visualization by leveraging the computational power of the graphics card. Visbrain is available on Github and comes with a documentation, examples, and datasets (http://visbrain.org).

6.
Neuroimage ; 179: 30-39, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29885482

RESUMO

Rhythmic neuronal synchronization across large-scale networks is thought to play a key role in the regulation of conscious states. Changes in neuronal oscillation amplitude across states of consciousness have been widely reported, but little is known about possible changes in the temporal dynamics of these oscillations. The temporal structure of brain oscillations may provide novel insights into the neural mechanisms underlying consciousness. To address this question, we examined long-range temporal correlations (LRTC) of EEG oscillation amplitudes recorded during both wakefulness and anesthetic-induced unconsciousness. Importantly, the time-varying EEG oscillation envelopes were assessed over the course of a sevoflurane sedation protocol during which the participants alternated between states of consciousness and unconsciousness. Both spectral power and LRTC in oscillation amplitude were computed across multiple frequency bands. State-dependent differences in these features were assessed using non-parametric tests and supervised machine learning. We found that periods of unconsciousness were associated with increases in LRTC in beta (15-30Hz) amplitude over frontocentral channels and with a suppression of alpha (8-13Hz) amplitude over occipitoparietal electrodes. Moreover, classifiers trained to predict states of consciousness on single epochs demonstrated that the combination of beta LRTC with alpha amplitude provided the highest classification accuracy (above 80%). These results suggest that loss of consciousness is accompanied by an augmentation of temporal persistence in neuronal oscillation amplitude, which may reflect an increase in regularity and a decrease in network repertoire compared to the brain's activity during resting-state consciousness.


Assuntos
Encéfalo/fisiologia , Estado de Consciência/fisiologia , Inconsciência , Vigília/fisiologia , Anestésicos Inalatórios/farmacologia , Encéfalo/efeitos dos fármacos , Estado de Consciência/efeitos dos fármacos , Eletroencefalografia , Feminino , Humanos , Masculino , Sevoflurano/farmacologia , Inconsciência/induzido quimicamente , Vigília/efeitos dos fármacos , Adulto Jovem
7.
Clin Neurophysiol ; 128(9): 1719-1736, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28756348

RESUMO

OBJECTIVE: Neuroimaging studies provide evidence of disturbed resting-state brain networks in Schizophrenia (SZ). However, untangling the neuronal mechanisms that subserve these baseline alterations requires measurement of their electrophysiological underpinnings. This systematic review specifically investigates the contributions of resting-state Magnetoencephalography (MEG) in elucidating abnormal neural organization in SZ patients. METHOD: A systematic literature review of resting-state MEG studies in SZ was conducted. This literature is discussed in relation to findings from resting-state fMRI and EEG, as well as to task-based MEG research in SZ population. Importantly, methodological limitations are considered and recommendations to overcome current limitations are proposed. RESULTS: Resting-state MEG literature in SZ points towards altered local and long-range oscillatory network dynamics in various frequency bands. Critical methodological challenges with respect to experiment design, and data collection and analysis need to be taken into consideration. CONCLUSION: Spontaneous MEG data show that local and global neural organization is altered in SZ patients. MEG is a highly promising tool to fill in knowledge gaps about the neurophysiology of SZ. However, to reach its fullest potential, basic methodological challenges need to be overcome. SIGNIFICANCE: MEG-based resting-state power and connectivity findings could be great assets to clinical and translational research in psychiatry, and SZ in particular.


Assuntos
Encéfalo/fisiopatologia , Magnetoencefalografia/métodos , Rede Nervosa/fisiopatologia , Descanso/fisiologia , Esquizofrenia/fisiopatologia , Mapeamento Encefálico/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Esquizofrenia/diagnóstico
8.
Front Psychiatry ; 8: 41, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28367127

RESUMO

Despite being the object of a thriving field of clinical research, the investigation of intrinsic brain network alterations in psychiatric illnesses is still in its early days. Because the pathological alterations are predominantly probed using functional magnetic resonance imaging (fMRI), many questions about the electrophysiological bases of resting-state alterations in psychiatric disorders, particularly among mood disorder patients, remain unanswered. Alongside important research using electroencephalography (EEG), the specific recent contributions and future promise of magnetoencephalography (MEG) in this field are not fully recognized and valued. Here, we provide a critical review of recent findings from MEG resting-state connectivity within major depressive disorder (MDD) and bipolar disorder (BD). The clinical MEG resting-state results are compared with those previously reported with fMRI and EEG. Taken together, MEG appears to be a promising but still critically underexploited technique to unravel the neurophysiological mechanisms that mediate abnormal (both hyper- and hypo-) connectivity patterns involved in MDD and BD. In particular, a major strength of MEG is its ability to provide source-space estimations of neuromagnetic long-range rhythmic synchronization at various frequencies (i.e., oscillatory coupling). The reviewed literature highlights the relevance of probing local and interregional rhythmic synchronization to explore the pathophysiological underpinnings of each disorder. However, before we can fully take advantage of MEG connectivity analyses in psychiatry, several limitations inherent to MEG connectivity analyses need to be understood and taken into account. Thus, we also discuss current methodological challenges and outline paths for future research. MEG resting-state studies provide an important window onto perturbed spontaneous oscillatory brain networks and hence supply an important complement to fMRI-based resting-state measurements in psychiatric populations.

9.
PLoS One ; 11(8): e0160304, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27529476

RESUMO

Visuospatial attention can be deployed to different locations in space independently of ocular fixation, and studies have shown that event-related potential (ERP) components can effectively index whether such covert visuospatial attention is deployed to the left or right visual field. However, it is not clear whether we may obtain a more precise spatial localization of the focus of attention based on the EEG signals during central fixation. In this study, we used a modified Posner cueing task with an endogenous cue to determine the degree to which information in the EEG signal can be used to track visual spatial attention in presentation sequences lasting 200 ms. We used a machine learning classification method to evaluate how well EEG signals discriminate between four different locations of the focus of attention. We then used a multi-class support vector machine (SVM) and a leave-one-out cross-validation framework to evaluate the decoding accuracy (DA). We found that ERP-based features from occipital and parietal regions showed a statistically significant valid prediction of the location of the focus of visuospatial attention (DA = 57%, p < .001, chance-level 25%). The mean distance between the predicted and the true focus of attention was 0.62 letter positions, which represented a mean error of 0.55 degrees of visual angle. In addition, ERP responses also successfully predicted whether spatial attention was allocated or not to a given location with an accuracy of 79% (p < .001). These findings are discussed in terms of their implications for visuospatial attention decoding and future paths for research are proposed.


Assuntos
Atenção/fisiologia , Eletroencefalografia , Processamento de Sinais Assistido por Computador , Processamento Espacial/fisiologia , Artefatos , Potenciais Evocados/fisiologia , Feminino , Humanos , Masculino , Estimulação Luminosa , Máquina de Vetores de Suporte , Percepção Visual/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...