Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 16(11): e1009088, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33137814

RESUMO

Mutations in the molecular co-chaperone Bcl2-associated athanogene 3 (BAG3) are found to cause dilated cardiomyopathy (DCM), resulting in systolic dysfunction and heart failure, as well as myofibrillar myopathy (MFM), which is characterized by protein aggregation and myofibrillar disintegration in skeletal muscle cells. Here, we generated a CRISPR/Cas9-induced Bag3 knockout zebrafish line and found the complete preservation of heart and skeletal muscle structure and function during embryonic development, in contrast to morpholino-mediated knockdown of Bag3. Intriguingly, genetic compensation, a process of transcriptional adaptation which acts independent of protein feedback loops, was found to prevent heart and skeletal muscle damage in our Bag3 knockout model. Proteomic profiling and quantitative real-time PCR analyses identified Bag2, another member of the Bag protein family, significantly upregulated on a transcript and protein level in bag3-/- mutants. This implied that the decay of bag3 mutant mRNA in homozygous bag3-/- embryos caused the transcriptional upregulation of bag2 expression. We further demonstrated that morpholino-mediated knockdown of Bag2 in bag3-/- embryos evoked severe functional and structural heart and skeletal muscle defects, which are similar to Bag3 morphants. However, Bag2 knockdown in bag3+/+ or bag3+/- embryos did not result in (cardio-)myopathy. Finally, we found that inhibition of the nonsense-mediated mRNA decay (NMD) machinery by knockdown of upf1, an essential NMD factor, caused severe heart and skeletal muscle defects in bag3-/- mutants due to the blockade of transcriptional adaptation of bag2 expression. Our findings provide evidence that genetic compensation might vitally influence the penetrance of disease-causing bag3 mutations in vivo.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/deficiência , Proteínas Reguladoras de Apoptose/genética , Cardiomiopatias/genética , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/patologia , Modelos Animais de Doenças , Insuficiência Cardíaca/patologia , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Doenças Musculares/genética , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Mutação , Miocárdio/metabolismo , Miopatias Congênitas Estruturais/metabolismo , Fenótipo , Proteômica , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
2.
Mech Dev ; 157: 1-9, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30974150

RESUMO

Deflecting biomineralized crystals attached to vestibular hair cells are necessary for maintaining balance. Zebrafish (Danio rerio) are useful organisms to study these biomineralized crystals called otoliths, as many required genes are homologous to human otoconial development. We sought to identify and characterize the causative gene in a trio of homozygous recessive mutants, no content (nco) and corkscrew (csr), and vanished (vns), which fail to develop otoliths during early ear development. We show that nco, csr, and vns have potentially deleterious mutations in polyketide synthase (pks1), a multi-modular protein that has been previously implicated in biomineralization events in chordates and echinoderms. We found that Otoconin-90 (Oc90) expression within the otocyst is diffuse in nco and csr; therefore, it is not sufficient for otolith biomineralization in zebrafish. Similarly, normal localization of Otogelin, a protein required for otolith tethering in the otolithic membrane, is not sufficient for Oc90 attachment. Furthermore, eNOS signaling and Endothelin-1 signaling were the most up- and down-regulated pathways during otolith agenesis in nco, respectively. Our results demonstrate distinct processes for otolith nucleation and biomineralization in vertebrates and will be a starting point for models that are independent of Oc90-mediated seeding. This study will serve as a basis for investigating the role of eNOS signaling and Endothelin-1 signaling during otolith formation.


Assuntos
Biomineralização/fisiologia , Membrana dos Otólitos/fisiologia , Policetídeo Sintases/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/fisiologia , Animais , Sequência de Bases , DNA/genética , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Íons , Mutação/genética , Oryzias , Plasmídeos/genética , Policetídeo Sintases/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
3.
Dev Dyn ; 244(3): 239-53, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25255879

RESUMO

BACKGROUND: Otoconia are bio-crystals that couple mechanic forces to the sensory hair cells in the utricle and saccule, a process essential for us to sense linear acceleration and gravity for the purpose of maintaining bodily balance. In fish, structurally similar bio-crystals called otoliths mediate both balance and hearing. Otoconia abnormalities are common and can cause vertigo and imbalance in humans. However, the molecular etiology of these illnesses is unknown, as investigators have only begun to identify genes important for otoconia formation in recent years. RESULTS: To date, in-depth studies of selected mouse otoconial proteins have been performed, and about 75 zebrafish genes have been identified to be important for otolith development. CONCLUSIONS: This review will summarize recent findings as well as compare otoconia and otolith development. It will provide an updated brief review of otoconial proteins along with an overview of the cells and cellular processes involved. While continued efforts are needed to thoroughly understand the molecular mechanisms underlying otoconia and otolith development, it is clear that the process involves a series of temporally and spatially specific events that are tightly coordinated by numerous proteins. Such knowledge will serve as the foundation to uncover the molecular causes of human otoconia-related disorders.


Assuntos
Organogênese/fisiologia , Membrana dos Otólitos/embriologia , Peixe-Zebra/embriologia , Animais , Humanos , Camundongos , Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...