Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 94: 129450, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37591318

RESUMO

Methionine adenosyltransferase 2A (MAT2A) has been indicated as a drug target for oncology indications. Clinical trials with MAT2A inhibitors are currently on-going. Here, a structure-based virtual screening campaign was performed on the commercially available chemical space which yielded two novel MAT2A-inhibitor chemical series. The binding modes of the compounds were confirmed with X-ray crystallography. Both series have acceptable physicochemical properties and show nanomolar activity in the biochemical MAT2A inhibition assay and single-digit micromolar activity in the proliferation assay (MTAP -/- cell line). The identified compounds and the relating structural data could be helpful in related drug discovery projects.


Assuntos
Bioensaio , Metionina Adenosiltransferase , Linhagem Celular , Cristalografia por Raios X , Metionina Adenosiltransferase/antagonistas & inibidores , Terapia de Alvo Molecular
2.
FEBS Lett ; 593(6): 611-621, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30815863

RESUMO

Improving the performance of the key photosynthetic enzyme Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) by protein engineering is a critical strategy for increasing crop yields. The extensive chaperone requirement of plant Rubisco for folding and assembly has long been an impediment to this goal. Production of plant Rubisco in Escherichia coli requires the coexpression of the chloroplast chaperonin and four assembly factors. Here, we demonstrate that simultaneous expression of Rubisco and chaperones from a T7 promotor produces high levels of functional enzyme. Expressing the small subunit of Rubisco with a C-terminal hexahistidine-tag further improved assembly, resulting in a ~ 12-fold higher yield than the previously published procedure. The expression system described here provides a platform for the efficient production and engineering of plant Rubisco.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/enzimologia , Clonagem Molecular/métodos , Chaperoninas do Grupo I/genética , Chaperonas Moleculares/genética , Proteínas de Ligação a Fosfato/genética , Ribulose-Bifosfato Carboxilase/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Chaperoninas do Grupo I/metabolismo , Histidina/genética , Histidina/metabolismo , Cinética , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Fotossíntese/genética , Dobramento de Proteína , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Secundária de Proteína , Subunidades Proteicas/genética , Subunidades Proteicas/isolamento & purificação , Subunidades Proteicas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Ribulose-Bifosfato Carboxilase/isolamento & purificação , Ribulose-Bifosfato Carboxilase/metabolismo
3.
Mol Cell ; 67(5): 744-756.e6, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28803776

RESUMO

How AAA+ chaperones conformationally remodel specific target proteins in an ATP-dependent manner is not well understood. Here, we investigated the mechanism of the AAA+ protein Rubisco activase (Rca) in metabolic repair of the photosynthetic enzyme Rubisco, a complex of eight large (RbcL) and eight small (RbcS) subunits containing eight catalytic sites. Rubisco is prone to inhibition by tight-binding sugar phosphates, whose removal is catalyzed by Rca. We engineered a stable Rca hexamer ring and analyzed its functional interaction with Rubisco. Hydrogen/deuterium exchange and chemical crosslinking showed that Rca structurally destabilizes elements of the Rubisco active site with remarkable selectivity. Cryo-electron microscopy revealed that Rca docks onto Rubisco over one active site at a time, positioning the C-terminal strand of RbcL, which stabilizes the catalytic center, for access to the Rca hexamer pore. The pulling force of Rca is fine-tuned to avoid global destabilization and allow for precise enzyme repair.


Assuntos
Proteínas de Bactérias/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Plantas/metabolismo , Rhodobacter sphaeroides/enzimologia , Ribulose-Bifosfato Carboxilase/metabolismo , Ativador de Plasminogênio Tecidual/metabolismo , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Domínio Catalítico , Reagentes de Ligações Cruzadas/química , Medição da Troca de Deutério , Estabilidade Enzimática , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Simulação de Acoplamento Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Subunidades Proteicas , Rhodobacter sphaeroides/genética , Ribulose-Bifosfato Carboxilase/química , Ribulose-Bifosfato Carboxilase/genética , Relação Estrutura-Atividade , Fatores de Tempo , Ativador de Plasminogênio Tecidual/química , Ativador de Plasminogênio Tecidual/genética
4.
Front Mol Biosci ; 4: 20, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28443288

RESUMO

Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), the key enzyme of the Calvin-Benson-Bassham cycle of photosynthesis, requires conformational repair by Rubisco activase for efficient function. Rubisco mediates the fixation of atmospheric CO2 by catalyzing the carboxylation of the five-carbon sugar ribulose-1,5-bisphosphate (RuBP). It is a remarkably inefficient enzyme, and efforts to increase crop yields by bioengineering Rubisco remain unsuccessful. This is due in part to the complex cellular machinery required for Rubisco biogenesis and metabolic maintenance. To function, Rubisco must undergo an activation process that involves carboxylation of an active site lysine by a non-substrate CO2 molecule and binding of a Mg2+ ion. Premature binding of the substrate RuBP results in an inactive enzyme. Moreover, Rubisco can also be inhibited by a range of sugar phosphates, some of which are "misfire" products of its multistep catalytic reaction. The release of the inhibitory sugar molecule is mediated by the AAA+ protein Rubisco activase (Rca), which couples hydrolysis of ATP to the structural remodeling of Rubisco. Rca enzymes are found in the vast majority of photosynthetic organisms, from bacteria to higher plants. They share a canonical AAA+ domain architecture and form six-membered ring complexes but are diverse in sequence and mechanism, suggesting their convergent evolution. In this review, we discuss recent advances in understanding the structure and function of this important group of client-specific AAA+ proteins.

5.
FEBS J ; 283(18): 3389-407, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27419381

RESUMO

UNLABELLED: Adenylate kinases (ADK) are key enzymes that maintain the energetic balance in cellular compartments by catalyzing the reaction: AMP + ATP↔2 ADP. Here, we analyzed the chloroplast ADK 3 from the green alga, Chlamydomonas reinhardtii for the first time. This enzyme bears a C-terminal extension that is highly similar to the C-terminal end of the intrinsically disordered protein CP12 that plays a major role in the redox regulation of key enzymes of the Calvin-Benson cycle like glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase. The only other known example of a CP12-like extension is found in the GapB isoform of GAPDH, where it is responsible for the autonomous redox regulation of the higher plant A2 B2 GAPDH. In this study, we show that the CP12-like tail is not involved in the redox regulation of ADK 3, but contributes greatly to its stability, and is essential for the post-translational modification of the Cys221 residue by glutathione. This report highlights the fact that the C-terminal part of the CP12 protein can act as a moonlighting, intrinsically disordered module conferring additional capabilities to the proteins to which it is added. ENZYMES: Adenylate kinase (ADK, EC 2.7.4.3) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH, EC 1.2.1.13).


Assuntos
Adenilato Quinase/química , Adenilato Quinase/metabolismo , Proteínas de Algas/química , Proteínas de Algas/metabolismo , Chlamydomonas reinhardtii/enzimologia , Adenilato Quinase/genética , Proteínas de Algas/genética , Sequência de Aminoácidos , Chlamydomonas reinhardtii/genética , Proteínas de Cloroplastos/química , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Dicroísmo Circular , Cisteína/química , Estabilidade Enzimática , Glutationa/química , Glutationa/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Modelos Moleculares , Oxirredução , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos
6.
Front Mol Biosci ; 2: 23, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26042223

RESUMO

Intrinsically Disordered Proteins (IDPs), or protein fragments also called Intrinsically Disordered Regions (IDRs), display high flexibility as the result of their amino acid composition. They can adopt multiple roles. In globular proteins, IDRs are usually found as loops and linkers between secondary structure elements. However, not all disordered fragments are loops: some proteins bear an intrinsically disordered extension at their C- or N-terminus, and this flexibility can affect the protein as a whole. In this review, we focus on the disordered N- and C-terminal extensions of globular proteins from photosynthetic organisms. Using the examples of the A2B2-GAPDH and the α Rubisco activase isoform, we show that intrinsically disordered extensions can help regulate their "host" protein in response to changes in light, thereby participating in photosynthesis regulation. As IDPs are famous for their large number of protein partners, we used the examples of the NAC, bZIP, TCP, and GRAS transcription factor families to illustrate the fact that intrinsically disordered extremities can allow a protein to have an increased number of partners, which directly affects its regulation. Finally, for proteins from the cryptochrome light receptor family, we describe how a new role for the photolyase proteins may emerge by the addition of an intrinsically disordered extension, while still allowing the protein to absorb blue light. This review has highlighted the diverse repercussions of the disordered extension on the regulation and function of their host protein and outlined possible future research avenues.

7.
Biochem Biophys Res Commun ; 458(3): 488-493, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25666947

RESUMO

CP12 is an intrinsically disordered protein playing a key role in the regulation of the Benson-Calvin cycle. Due to the high intrinsic flexibility of CP12, it is essential to consider its structural modulation induced upon binding to the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK) enzymes. Here, we report for the first time detailed structural modulation about the wild-type CP12 and its site-specific N-terminal and C-terminal disulfide bridge mutants upon interaction with GAPDH and PRK by Förster resonance energy transfer (FRET). Our results indicate an increase in CP12 compactness when the complex is formed with GAPDH or PRK. In addition, the distributions in FRET histograms show the elasticity and conformational flexibility of CP12 in all supra molecular complexes. Contrarily to previous beliefs, our FRET results importantly reveal that both N-terminal and C-terminal site-specific CP12 mutants are able to form the monomeric (GAPDH-CP12-PRK) complex.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas de Plantas/metabolismo , Chlamydomonas reinhardtii/química , Transferência Ressonante de Energia de Fluorescência , Gliceraldeído-3-Fosfato Desidrogenases/química , Modelos Moleculares , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fotossíntese , Proteínas de Plantas/química , Ligação Proteica , Mapas de Interação de Proteínas
8.
Mol Biosyst ; 11(4): 1134-45, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25688043

RESUMO

Phosphoribulokinase (PRK) in the green alga Chlamydomonas reinhardtii is a finely regulated and well-studied enzyme of the Benson-Calvin cycle. PRK can form a complex with glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the small chloroplast protein CP12. This study aimed to determine the molecular determinants on PRK involved in the complex and the mechanism of action of a recently described novel regulation of PRK that involves glutathionylation. A combination of mass spectrometry, mutagenesis and activity analyses showed that Cys16, besides its role as the binding site of ATP, was also the site for S-glutathionylation. Previous kinetic analysis of the C55S mutant showed that in the oxidized inactive form of PRK, this residue formed a disulfide bridge with the Cys16 residue. This is the only bridge reported for PRK in the literature. Our data show for the first time that a disulfide bridge between Cys243 and Cys249 on PRK is required to form the PRK-GAPDH-CP12 complex. These results uncover a new mechanism for the PRK-GAPDH-CP12 formation involving a thiol disulfide exchange reaction with CP12 and identify Cys16 of PRK as a target of glutathionylation acting against oxidative stress. Although Cys16 is the key residue involved in binding ATP and acting as a defense against oxidative damage, the formation of the algal ternary complex requires the formation of another disulfide bridge on PRK involving Cys243 and Cys249.


Assuntos
Chlamydomonas reinhardtii/enzimologia , Cisteína/química , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fotossíntese/fisiologia , Proteínas de Plantas/química , Sequência de Aminoácidos , Chlamydomonas reinhardtii/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Alinhamento de Sequência
9.
FEBS J ; 281(14): 3206-17, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24863370

RESUMO

Light/dark regulation of the Calvin cycle in oxygenic photosynthetic organisms involves the formation and dissociation of supramolecular complexes between CP12, a nuclear-encoded chloroplast protein, and the two enzymes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (EC 1.2.1.13) and phosphoribulokinase (PRK) (EC 2.7.1.19). Despite the high importance of understanding the structural basis of the interaction of CP12 with GAPDH and PRK to investigate the regulation of the Calvin cycle, information is still lacking about the structural remodulation of CP12 and its complex formation. Here, we characterize the diffusion dynamics and hydrodynamic radii of CP12 from Chlamydomonas reinhardtii upon binding to GAPDH and PRK using fluorescence correlation spectroscopy experiments. We quantify a hydrodynamic radius of 3.4 ± 0.2 nm for the CP12 protein with an increase up to 5.2 ± 0.3 nm upon complex formation with GAPDH and PRK. In addition, unfolding experiments reveal a 1.6- and 2.0-fold increase respectively of the hydrodynamic radii for the N-terminal and C-terminal cysteine CP12 mutant proteins compared with their native folded structures. The different behavior of the CP12 mutant proteins during hydrophobic collapse transition is a direct clue to different structural orientations of the CP12 mutant proteins. These different structures are expected to facilitate the binding of either GAPDH or PRK during binary complex and ternary complex formation.


Assuntos
Proteínas de Cloroplastos/química , Proteínas de Cloroplastos/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Chlamydomonas reinhardtii/metabolismo , Cloroplastos/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/química , Hidrodinâmica , Proteínas Intrinsicamente Desordenadas/química , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fotossíntese , Espectrometria de Fluorescência
10.
Biochimie ; 97: 228-37, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24211189

RESUMO

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK) are two energy-consuming enzymes of the Calvin-Benson cycle, whose regulation is crucial for the global balance of the photosynthetic process under different environmental conditions. In oxygen phototrophs, GAPDH and PRK regulation involves the redox-sensitive protein CP12. In the dark, oxidized chloroplast thioredoxins trigger the formation of a GAPDH/CP12/PRK complex in which both enzyme activities are down-regulated. In this report, we show that free GAPDH (A4-isoform) and PRK are also inhibited by oxidants like H2O2, GSSG and GSNO. Both in the land plant Arabidopsis thaliana and in the green microalga Chlamydomonas reinhardtii, both enzymes can be glutathionylated as shown by biotinylated-GSSG assay and MALDI-ToF mass spectrometry. CP12 is not glutathionylated but homodisulfides are formed upon oxidant treatments. In Arabidopsis but not in Chlamydomonas, the interaction between oxidized CP12 and GAPDH provides full protection from oxidative damage. In both organisms, preformed GAPDH/CP12/PRK complexes are protected from GSSG or GSNO oxidation, and in Arabidopsis also from H2O2 treatment. Overall, the results suggest that the role of CP12 in oxygen phototrophs needs to be extended beyond light/dark regulation, and include protection of enzymes belonging to Calvin-Benson cycle from oxidative stress.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Proteínas de Transporte/metabolismo , Chlamydomonas reinhardtii/enzimologia , Regulação da Expressão Gênica de Plantas , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Transporte/genética , Chlamydomonas reinhardtii/efeitos dos fármacos , Chlamydomonas reinhardtii/genética , Escuridão , Dissulfeto de Glutationa/farmacologia , Gliceraldeído-3-Fosfato Desidrogenases/genética , Peróxido de Hidrogênio/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular , Isoenzimas/genética , Isoenzimas/metabolismo , Oxirredução , Estresse Oxidativo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fotossíntese/efeitos dos fármacos , Fotossíntese/fisiologia , Proteínas de Plantas/genética , S-Nitrosoglutationa/farmacologia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...