Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomimetics (Basel) ; 8(4)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37622978

RESUMO

There is no doubt that the involvement of the Internet of Things (IoT) in our daily lives has changed the way we live and interact as a global community, as IoT enables intercommunication of digital objects around us, creating a pervasive environment. As of now, this IoT is found in almost every domain that is vital for human survival, such as agriculture, medical care, transportation, the military, and so on. Day by day, various IoT solutions are introduced to the market by manufacturers towards making our life easier and more comfortable. On the other hand, even though IoT now holds a key place in our lives, the IoT ecosystem has various limitations in efficiency, scalability, and adaptability. As such, biomimicry, which involves imitating the systems found in nature within human-made systems, appeared to be a potential remedy to overcome such challenges pertaining to IoT, which can also be referred to as bio-inspired IoT. In the simplest terms, bio-inspired IoT combines nature-inspired principles and IoT to create more efficient and adaptive IoT solutions, that can overcome most of the inherent challenges pertaining to traditional IoT. It is based on the idea that nature has already solved many challenging problems and that, by studying and mimicking biological systems, we might develop better IoT systems. As of now, this concept of bio-inspired IoT is applied to various fields such as medical care, transportation, cyber-security, agriculture, and so on. However, it is noted that only a few studies have been carried out on this new concept, explaining how these bio-inspired concepts are integrated with IoT. Thus, to fill in the gap, in this study, we provide a brief review of bio-inspired IoT, highlighting how it came into play, its ecosystem, its latest status, benefits, challenges, and future directions.

2.
Sensors (Basel) ; 23(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36905010

RESUMO

Throughout the course of human history, owing to innovations that shape the future of mankind, many technologies have been innovated and used towards making people's lives easier. Such technologies have made us who we are today and are involved with every domain that is vital for human survival such as agriculture, healthcare, and transportation. The Internet of Things (IoT) is one such technology that revolutionizes almost every aspect of our lives, found early in the 21st century with the advancement of Internet and Information Communication (ICT) Technologies. As of now, the IoT is served in almost every domain, as we mentioned above, allowing the connectivity of digital objects around us to the Internet, thus allowing the remote monitoring, control, and execution of actions based on underlying conditions, making such objects smarter. Over time, the IoT has progressively evolved and paved the way towards the Internet of Nano-Things (IoNT) which is the use of nano-size miniature IoT devices. The IoNT is a relatively new technology that has lately begun to establish a name for itself, and many are not aware of it, even in academia or research. The use of the IoT always comes at a cost, owing to the connectivity to the Internet and the inherently vulnerable nature of IoT, wherein it paves the way for hackers to compromise security and privacy. This is also applicable to the IoNT, which is the advanced and miniature version of IoT, and brings disastrous consequences if such security and privacy violations were to occur as no one can notice such issues pertaining to the IoNT, due to their miniaturized nature and novelty in the field. The lack of research in the IoNT domain has motivated us to synthesize this research, highlighting architectural elements in the IoNT ecosystem and security and privacy challenges pertaining to the IoNT. In this regard, in the study, we provide a comprehensive overview of the IoNT ecosystem and security and privacy pertaining to the IoNT as a reference to future research.


Assuntos
Internet das Coisas , Privacidade , Humanos , Ecossistema , Segurança Computacional , Atenção à Saúde , Internet
3.
Sensors (Basel) ; 22(16)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36016060

RESUMO

Modern agriculture incorporated a portfolio of technologies to meet the current demand for agricultural food production, in terms of both quality and quantity. In this technology-driven farming era, this portfolio of technologies has aided farmers to overcome many of the challenges associated with their farming activities by enabling precise and timely decision making on the basis of data that are observed and subsequently converged. In this regard, Artificial Intelligence (AI) holds a key place, whereby it can assist key stakeholders in making precise decisions regarding the conditions on their farms. Machine Learning (ML), which is a branch of AI, enables systems to learn and improve from their experience without explicitly being programmed, by imitating intelligent behavior in solving tasks in a manner that requires low computational power. For the time being, ML is involved in a variety of aspects of farming, assisting ranchers in making smarter decisions on the basis of the observed data. In this study, we provide an overview of AI-driven precision farming/agriculture with related work and then propose a novel cloud-based ML-powered crop recommendation platform to assist farmers in deciding which crops need to be harvested based on a variety of known parameters. Moreover, in this paper, we compare five predictive ML algorithms-K-Nearest Neighbors (KNN), Decision Tree (DT), Random Forest (RF), Extreme Gradient Boosting (XGBoost) and Support Vector Machine (SVM)-to identify the best-performing ML algorithm on which to build our recommendation platform as a cloud-based service with the intention of offering precision farming solutions that are free and open source, as will lead to the growth and adoption of precision farming solutions in the long run.


Assuntos
Agricultura , Inteligência Artificial , Produtos Agrícolas , Fazendas , Aprendizado de Máquina
4.
Front Plant Sci ; 13: 1030168, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36684733

RESUMO

Agriculture is the primary and oldest industry in the world and has been transformed over the centuries from the prehistoric era to the technology-driven 21st century, where people are always solving complex problems with the aid of technology. With the power of Information and Communication Technologies (ICTs), the world has become a global village, where every digital object that prevails in the world is connected to each other with the Internet of Things (IoT). The fast proliferation of IoT-based technology has revolutionized practically every sector, including agriculture, shifting the industry from statistical to quantitative techniques. Such profound transformations are reshaping traditional agricultural practices and generating new possibilities in the face of various challenges. With the opportunities created, farmers are now able to monitor the condition of crops in real time. With the automated IoT solutions, farmers can automate tasks in the farmland, as these solutions are capable of making precise decisions based on underlying challenges and executing actions to overcome such difficulties, alerting farmers in real-time, eventually leading to increased productivity and higher harvest. In this context, we present a cloud-enabled low-cost sensorized IoT platform for real-time monitoring and automating tasks dealing with a tomato plantation in an indoor environment, highlighting the necessity of smart agriculture. We anticipate that the findings of this study will serve as vital guides in developing and promoting smart agriculture solutions aimed at improving productivity and quality while also enabling the transition to a sustainable environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...