Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 1070398, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36874916

RESUMO

The consumption of healthy food, in order to strengthen the immune system, is now a major focus of people worldwide and is essential to tackle the emerging pandemic concerns. Moreover, research in this area paves the way for diversification of human diets by incorporating underutilized crops which are highly nutritious and climate-resilient in nature. However, although the consumption of healthy foods increases nutritional uptake, the bioavailability of nutrients and their absorption from foods also play an essential role in curbing malnutrition in developing countries. This has led to a focus on anti-nutrients that interfere with the digestion and absorption of nutrients and proteins from foods. Anti-nutritional factors in crops, such as phytic acid, gossypol, goitrogens, glucosinolates, lectins, oxalic acid, saponins, raffinose, tannins, enzyme inhibitors, alkaloids, ß-N-oxalyl amino alanine (BOAA), and hydrogen cyanide (HCN), are synthesized in crop metabolic pathways and are interconnected with other essential growth regulation factors. Hence, breeding with the aim of completely eliminating anti-nutrition factors tends to compromise desirable features such as yield and seed size. However, advanced techniques, such as integrated multi-omics, RNAi, gene editing, and genomics-assisted breeding, aim to breed crops in which negative traits are minimized and to provide new strategies to handle these traits in crop improvement programs. There is also a need to emphasize individual crop-based approaches in upcoming research programs to achieve smart foods with minimum constraints in future. This review focuses on progress in molecular breeding and prospects for additional approaches to improve nutrient bioavailability in major crops.

2.
Front Genet ; 13: 1007552, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699471

RESUMO

Small millets, also known as nutri-cereals, are smart foods that are expected to dominate food industries and diets to achieve nutritional security. Nutri-cereals are climate resilient and nutritious. Small millet-based foods are becoming popular in markets and are preferred for patients with celiac and diabetes. These crops once ruled as food and fodder but were pushed out of mainstream cultivation with shifts in dietary habits to staple crops during the green revolution. Nevertheless, small millets are rich in micronutrients and essential amino acids for regulatory activities. Hence, international and national organizations have recently aimed to restore these lost crops for their desirable traits. The major goal in reviving these crops is to boost the immune system of the upcoming generations to tackle emerging pandemics and disease infestations in crops. Earlier periods of civilization consumed these crops, which had a greater significance in ethnobotanical values. Along with nutrition, these crops also possess therapeutic traits and have shown vast medicinal use in tribal communities for the treatment of diseases like cancer, cardiovascular disease, and gastrointestinal issues. This review highlights the significance of small millets, their values in cultural heritage, and their prospects. Furthermore, this review dissects the nutritional and therapeutic traits of small millets for developing sustainable diets in near future.

3.
Environ Entomol ; 50(4): 919-928, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-33844012

RESUMO

Understanding host use by psyllids (Hemiptera: Psylloidea) benefits from comparative studies of behavior on host and nonhost plant species. While most psyllid species develop on one or a few closely related plant species, some species are generalized enough to develop on species across plant families. We used electropenetography (EPG) technology to compare probing activities of an oligophagous psyllid (Bactericera cockerelli (Sulc)) and a host-specialized psyllid (Bactericera maculipennis) on two species of Solanaceae (potato, Solanum tuberosum L. and matrimony vine, Lycium barbarum L.) and two species of Convolvulaceae (field bindweed, Convolvulus arvensis L. and sweet potato, Ipomoea batatas). Bactericera cockerelli develops on all four species, albeit with longer development times on Convolvulaceae. Bactericera maculipennis develops only on Convolvulaceae. Bactericera cockerelli fed readily from phloem of all four species, but the likelihood of entering phloem and duration of time in phloem was reduced on suboptimal hosts (Convolvulaceae) relative to behavior on Solanaceae. We observed instances of cycling between bouts of phloem salivation and ingestion in assays of optimal (Solanaceae) hosts not observed on Convolvulaceae. The Convolvulaceae-specialized B. maculipennis (Crawford) failed to feed from phloem of nonhosts (Solanaceae). Both psyllid species readily ingested from xylem of all plant species, irrespective of host status. Our finding that phloem feeding by B. maculipennis did not occur on potato has implications for understanding epidemiology of phloem-limited psyllid-vectored plant pathogens. Our results also showed that EPG assays detect subtle variation in probing activities that assist in understanding host use by psyllids.


Assuntos
Hemípteros , Solanum tuberosum , Animais , Doenças das Plantas
4.
Evol Appl ; 13(10): 2740-2753, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33294020

RESUMO

Changing climate and land-use practices have the potential to bring previously isolated populations of pest insects into new sympatry. This heightens the need to better understand how differing patterns of host-plant association, and unique endosymbionts, serve to promote genetic isolation or integration. We addressed these factors in populations of potato psyllid, Bactericera cockerelli (Sulc), a generalist herbivore that vectors a bacterial pathogen (Candidatus Liberibacter solanacearum, causal pathogen of zebra chip disease) of potato (Solanum tuberosum L.). Genome-wide SNP data revealed two major genetic clusters-psyllids collected from potato crops were genetically similar to psyllids found on a common weed, Lycium spp., but dissimilar from those found on another common non-crop host, Solanum dulcamara L. Most psyllids found on Lycium spp. and potato represented a single mitochondrial cytochrome oxidase I (COI) haplotype that has been suggested to not be native to the region, and whose arrival may have been concurrent with zebra chip disease first emerging. The putatively introduced COI haplotype usually co-occurred with endosymbiotic Wolbachia, while the putatively resident COI haplotype generally did not. Genetic intermediates between the two genetic populations of insects were rare, consistent with recent sympatry or reproductive isolation, although admixture patterns of apparent hybrids were consistent with introgression of genes from introduced into resident populations. Our results suggest that both host-plant associations and endosymbionts are shaping the population genetic structure of sympatric psyllid populations associated with different non-crop hosts. It is of future interest to explicitly examine vectorial capacity of the two populations and their potential hybrids, as population structure and hybridization might alter regional vector capacity and disease outbreaks.

5.
J Econ Entomol ; 113(2): 988-1000, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-31832680

RESUMO

Insect abundance is commonly recorded in the form of discrete counts taken from plants. Analyses of these counts provide information about spatial distributions and population structure. A study was conducted in the Lower Rio Grande Valley of Texas during April and May 2014 to determine how populations of potato psyllids [Bactericera cockerelli (Sulc)] within three potato fields change over time. It was found that potato psyllid populations in these potato fields frequently changed both spatially and temporally. Chi-square goodness of fit tests and Akaike's Information Criterion indicated that the frequency distributions of potato psyllid counts conformed to a negative binomial distribution, implying an aggregated spatial pattern. Variance-mean ratios were always much larger than one, also implying spatially clumped populations. However, with a few exceptions, a Spatial Analysis by Distance IndicEs analysis showed that potato psyllid counts were mostly random in space, the clumping generally occurring on individual potato plants and rarely involving groups of potato plants in close proximity. Trends in proportions of plants infested by at least one potato psyllid and the clumping parameter k were similar for all three potato fields. Potato psyllid spatial population structure is a dynamic process that involves continuous adult movements leading to substantial redistribution of potato psyllids over limited time spans of 2 to 3 d. By capturing elements of their spatial and temporal patterns of redistribution, the study reported here is a step towards a better understanding of the population dynamics and movement of potato psyllids.


Assuntos
Hemípteros , Solanum tuberosum , Animais , Doenças das Plantas , Dinâmica Populacional , Texas
6.
Environ Entomol ; 48(3): 603-613, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31041987

RESUMO

Psyllids (Hemiptera: Psylloidea) are phloem-feeding insects that tend to be highly specific in their host plants. Some species are well-known agricultural pests, often as vectors of plant pathogens. Many pest psyllids colonize agricultural fields from non-crop reproductive hosts or from non-host transitory and winter shelter plants. Uncertainty about which non-crop species serve as sources of psyllids hinders efforts to predict which fields or orchards are at greater risk of being colonized by psyllids. High-throughput sequencing of trnL, trnF, and ITS was used to examine the dietary histories of three pest and two non-pest psyllid species encompassing a diversity of lifecycles: Cacopsylla pyricola (Förster) (Psyllidae), Bactericera cockerelli (Sulc) (Triozidae), Diaphorina citri Kuwayama (Liviidae), Aphalara loca Caldwell (Aphalaridae), and a Cacopsylla species complex associated with Salix (Malphighiales: Salicaceae). Results revealed an unexpectedly high level of feeding on non-host species by all five psyllid species. The identification of the dietary history of the psyllids allowed us to infer their landscape-scale movements prior to capture. Our study demonstrates a novel use for gut content analysis-to provide insight into landscape-scale movements of psyllids-thus providing a means to pinpoint the non-crop sources of pest psyllids colonizing agricultural crops. We observed previously unknown psyllid behaviors during our efforts to develop this method and discuss new research directions for the study of psyllid ecology.


Assuntos
Hemípteros , Animais , Produtos Agrícolas , Reprodução
7.
Environ Entomol ; 46(2): 210-216, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28108600

RESUMO

The psyllid Bactericera maculipennis (Crawford) (Hemiptera: Triozidae) often cohabits field bindweed (Convolvulus arvensis, Solanales: Convolvulaceae) and other plants with the congeneric psyllid, Bactericera cockerelli (Sulc), in the Pacific Northwestern United States. Bactericera cockerelli is a vector of "Candidatus Liberibacter solanacearum," the pathogen associated with zebra chip disease of potato (Solanales: Solanaceae). Because B. maculipennis and B. cockerelli both naturally occur on certain plants, we surveyed B. maculipennis adults collected from Washington and Idaho for presence of "Ca. L. solanacearum" to determine whether this psyllid also harbors this pathogen. Liberibacter was present in 30% of field-collected B. maculipennis and in 100% of colony-reared psyllids. Sequences of 16S rDNA and microsatellite markers revealed that "Ca. L. solanacearum" from B. maculipennis was closely related to Liberibacter haplotype B from B. cockerelli. Results of laboratory assays demonstrated that Liberibacter can be transmitted between B. cockerelli and B. maculipennis on plants within the Convolvulaceae. Potato plants challenged with Liberibacter-infected B. maculipennis did not become infected, apparently because potato is not a suitable host for the psyllid. We therefore conclude that B. maculipennis is not a direct threat to potato production, despite its association with Liberibacter. We are the first to report that "Ca. L. solanacearum" is associated with a psyllid other than B. cockerelli in North America. Results of our study demonstrate the importance of understanding the complete ecology of psyllids-including interactions with other psyllids on non-crop hosts-in predicting what crops or regions are potentially susceptible to the spread of Liberibacter.


Assuntos
Hemípteros/microbiologia , Repetições de Microssatélites , Doenças das Plantas/microbiologia , Rhizobiaceae/classificação , Rhizobiaceae/genética , Animais , DNA Bacteriano/genética , Haplótipos , Idaho , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solanum tuberosum/microbiologia , Especificidade da Espécie , Washington
8.
J Econ Entomol ; 108(3): 904-16, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26470210

RESUMO

Potato psyllid, Bactericera cockerelli (Sulc), is a seasonal insect pest in the Lower Rio Grande Valley of Texas, where it transmits the bacterial pathogen "Candidatus Liberibacter solanacearum" that causes zebra chip disease of potato. Studies were conducted to evaluate host preference of B. cockerelli adults for different plant species, and plant size and density. Settling and oviposition behavior of B. cockerelli was studied on its wild and cultivated solanaceous hosts, including potato, tomato, pepper, eggplant, and silverleaf nightshade, under both field and laboratory conditions. Naturally occurring B. cockerelli were used to evaluate host preference under open field conditions throughout the growing season. Settling and oviposition preference studies in the laboratory were conducted as cage-release experiments using pairs of plants, and observations were recorded over a 72-h period. Results of field trials indicated that naturally occurring B. cockerelli preferred potato and tomato equally for settling and oviposition, but settled on pepper, eggplant, and silverleaf nightshade only in the absence of potato and tomato. Under laboratory conditions, B. cockerelli adults preferred larger host plants, regardless of the species tested. Results also showed that movement of B. cockerelli was minimal after initial landing and settling behavior was influenced by host plant density. Lone plants attracted the most psyllids and can be used as sentinel plants to monitor B. cockerelli activity. Information from both field and laboratory studies demonstrated that not only host plant species determined host selection behavior of B. cockerelli adults, but also plant size and density.


Assuntos
Hemípteros/fisiologia , Oviposição , Solanaceae/fisiologia , Animais , Comportamento Alimentar , Feminino , Cadeia Alimentar , Hemípteros/crescimento & desenvolvimento , Ninfa/crescimento & desenvolvimento , Ninfa/fisiologia , Especificidade da Espécie , Texas
9.
Plant Dis ; 99(7): 910-915, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30690968

RESUMO

Zebra chip disease of potato is caused by the bacterial pathogen 'Candidatus Liberibacter solanacearum' and is a growing concern for commercial potato production in several countries in North and Central America and New Zealand. 'Ca. L. solanacearum' is vectored by the potato psyllid Bactericera cockerelli, which transmits the pathogen to several cultivated and wild solanaceaous host plants. Silverleaf nightshade (SLN), Solanum elaeagnifolium, is a common weed in the Lower Rio Grande Valley of Texas and a host for both the potato psyllid and 'Ca. L. solanacearum'. SLN plants were successfully inoculated with 'Ca. L. solanacearum' under laboratory conditions. Retention studies demonstrated that 'Ca. L. solanacearum'-infected SLN planted in the field in January 2013, concurrent with commercial potato planting, retained the pathogen under field conditions throughout the year despite extensive dieback during summer. The presence of 'Ca. L. solanacearum' was confirmed in leaves, roots, and stolons of SLN plants collected the following year using polymerase chain reaction. Acquisition assays using B. cockerelli adults also revealed that SLN retained the pathogen. Transmission studies determined that B. cockerelli can acquire 'Ca. L. solanacearum' within a 2-week acquisition access period on 'Ca. L. solanacearum'-infected SLN and subsequently transmit the pathogen to potato. These results demonstrate that SLN plants can serve as a reservoir for 'Ca. L. solanacearum', providing a source of inoculum for B. cockerelli adults colonizing potato the next season. The presence of SLN plants all year round in the LRGV makes the weed an epidemiologically important host. These findings underscore the importance of eradicating or managing SLN plants growing in the vicinity of potato fields to prevent spread of 'Ca. L. solanacearum' and damage caused by zebra chip.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...