Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protist ; 167(2): 106-20, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26927496

RESUMO

Arranging organisms into functional groups aids ecological research by grouping organisms (irrespective of phylogenetic origin) that interact with environmental factors in similar ways. Planktonic protists traditionally have been split between photoautotrophic "phytoplankton" and phagotrophic "microzooplankton". However, there is a growing recognition of the importance of mixotrophy in euphotic aquatic systems, where many protists often combine photoautotrophic and phagotrophic modes of nutrition. Such organisms do not align with the traditional dichotomy of phytoplankton and microzooplankton. To reflect this understanding, we propose a new functional grouping of planktonic protists in an eco-physiological context: (i) phagoheterotrophs lacking phototrophic capacity, (ii) photoautotrophs lacking phagotrophic capacity, (iii) constitutive mixotrophs (CMs) as phagotrophs with an inherent capacity for phototrophy, and (iv) non-constitutive mixotrophs (NCMs) that acquire their phototrophic capacity by ingesting specific (SNCM) or general non-specific (GNCM) prey. For the first time, we incorporate these functional groups within a foodweb structure and show, using model outputs, that there is scope for significant changes in trophic dynamics depending on the protist functional type description. Accordingly, to better reflect the role of mixotrophy, we recommend that as important tools for explanatory and predictive research, aquatic food-web and biogeochemical models need to redefine the protist groups within their frameworks.


Assuntos
Eucariotos/classificação , Cadeia Alimentar , Fitoplâncton/classificação , Zooplâncton/classificação , Animais , Metabolismo Energético/fisiologia , Eucariotos/metabolismo , Eucariotos/fisiologia , Processos Fototróficos , Filogenia , Fitoplâncton/metabolismo , Fitoplâncton/fisiologia , Zooplâncton/metabolismo , Zooplâncton/fisiologia
2.
ISME J ; 6(3): 524-30, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21938023

RESUMO

Cells maintain an osmotic pressure essential for growth and division, using organic compatible solutes and inorganic ions. Mg(2+), which is the most abundant divalent cation in living cells, has not been considered an osmotically important solute. Here we show that under carbon limitation or dormancy native marine bacterial communities have a high cellular concentration of Mg(2+) (370-940 mM) and a low cellular concentration of Na(+) (50-170 mM). With input of organic carbon, the average cellular concentration of Mg(2+) decreased 6-12-fold, whereas that of Na(+) increased ca 3-4-fold. The concentration of chlorine, which was in the range of 330-1200 mM, and was the only inorganic counterion of quantitative significance, balanced and followed changes in the concentration of Mg(2+)+Na(+). In an osmotically stable environment, like seawater, any major shift in bacterial osmolyte composition should be related to shifts in growth conditions, and replacing organic compatible solutes with inorganic solutes is presumably a favorable strategy when growing in carbon-limited condition. A high concentration of Mg(2+) in cells may also serve to protect and stabilize macromolecules during periods of non-growth and dormancy. Our results suggest that Mg(2+) has a major role as osmolyte in marine bacteria, and that the [Mg(2+)]/[Na(+)] ratio is related to its physiological condition and nutritional status. Bacterial degradation is a main sink for dissolved organic carbon in the ocean, and understanding the mechanisms limiting bacterial activity is therefore essential for understanding the oceanic C-cycle. The [Mg(2+)]/[Na(+)]-ratio in cells may provide a physiological proxy for the transitions between C-limited and mineral nutrient-limited bacterial growth in the ocean's surface layer.


Assuntos
Bactérias/metabolismo , Carbono/metabolismo , Magnésio/metabolismo , Água do Mar/microbiologia , Bactérias/crescimento & desenvolvimento , Ciclo do Carbono , Clorofila/análise , Clorofila A , Oceanos e Mares , Estações do Ano , Sódio/metabolismo
4.
Environ Microbiol ; 4(6): 349-60, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12071980

RESUMO

Bacterial and archaeal assemblages have been studied in a multipond solar saltern using a range of microbial ecology techniques by four laboratories simultaneously. These include 16S rDNA sequencing from both denaturing gradient gel electrophoresis (DGGE) and clone libraries, and culturing methods. Water samples from eight ponds were analysed, covering a salinity range from near sea water (4% salt) to saturated sodium chloride (37% salt; ponds called crystallizers). Clone libraries focused on ponds with salinity of 8%, 22% and 32%. Although different cloning strategies were able to retrieve the same type of dominant sequences, there were differing degrees of success with less abundant sequences. Thus, the use of two sets of primers recovered a higher number of phylotypes. Bacterial and archaeal isolates were, however, different from any of the retrieved environmental sequences. For Bacteria, most sequences in the 8% salt pond were related to organisms of marine origin. Thus, representatives of the alpha-, beta-, gamma- and epsilon-subdivisions of Proteobacteria, the Cytophaga-Flavobacterium-Bacteroides group (CFB), high-G+C Gram-positive bacteria and cyanobacteria were found. In the 22% salt pond, alpha- and gamma-Proteobacteria, cyanobacteria and CFB were the only groups found, and most of them were related to specialized halophilic bacteria. From the 32% salt pond, only CFB were found, and most of the sequences retrieved clustered with Salinibacter ruber, an extremely halophilic bacterium. A decrease in the richness of bacterial genera was therefore apparent along the gradient. Archaea behaved quite similarly. In the lowest salinity ponds, sequences were related to environmental clones of Marine Archaea Group III (Thermoplasmales relatives) and to unclassified branches of Euryarchaeaota. In the 8%, 22% and 32% ponds, most of the clones were related to different cultured strains of Halobacteriaceae. Finally, most sequences from the crystallizers clustered with the uncultured square archaeon SPhT. Crenarchaeaota were not detected. Despite the fact that higher prokaryotic richness was apparent in the lower salinity ponds than in the crystallizers, the diversity index from clone libraries calculated according to Shannon and Weaver did not show this trend. This was because diversity in the crystallizers can be considered as 'microdiversity', the co-existence of several closely related clones of Bacteria (the S. ruber cluster) and Archaea (the SPhT cluster). Regardless of the changes in abundance, both Bacteria and Archaea showed the same pattern; as salinity increased, the number of different clusters decreased, and only one cluster became dominant. Both clusters, however, showed a considerable degree of microdiversity. The meaning of such microdiversity remains to be determined.


Assuntos
Archaea/genética , Bactérias/genética , Ecossistema , Variação Genética , Água do Mar/microbiologia , Cloreto de Sódio , Archaea/classificação , Bactérias/classificação , Eletroforese , Biblioteca Gênica , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...