Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinspir Biomim ; 13(3): 036006, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29582786

RESUMO

Aquatic plants are known to protect coastlines and riverbeds from erosion by damping waves and fluid flow. These flexible structures absorb the fluid-borne energy of an incoming fluid by deforming mechanically. In this paper we focus on the mechanisms involved in these fluid-elasticity interactions, as an efficient energy harvesting system, using an experimental canopy model in a wave tank. We study an array of partially-submerged flexible structures that are subjected to the action of a surface wave field, investigating in particular the role of spacing between the elements of the array on the ability of our system to absorb energy from the flow. The energy absorption potential of the canopy model is examined using global wave height measurements for the wave field and local measurements of the elastic energy based on the kinematics of each element of the canopy. We study different canopy arrays and show in particular that flexibility improves wave damping by around 40%, for which half is potentially harvestable.


Assuntos
Organismos Aquáticos/fisiologia , Fenômenos Fisiológicos Vegetais , Movimentos da Água , Fenômenos Biomecânicos , Biomimética , Simulação por Computador , Hidrodinâmica , Modelos Biológicos , Oceanos e Mares , Reologia
2.
J R Soc Interface ; 15(139)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29445037

RESUMO

Questions of energy dissipation or friction appear immediately when addressing the problem of a body moving in a fluid. For the most simple problems, involving a constant steady propulsive force on the body, a straightforward relation can be established balancing this driving force with a skin friction or form drag, depending on the Reynolds number and body geometry. This elementary relation closes the full dynamical problem and sets, for instance, average cruising velocity or energy cost. In the case of finite-sized and time-deformable bodies though, such as flapping flyers or undulatory swimmers, the comprehension of driving/dissipation interactions is not straightforward. The intrinsic unsteadiness of the flapping and deforming animal bodies complicates the usual application of classical fluid dynamic forces balance. One of the complications is because the shape of the body is indeed changing in time, accelerating and decelerating perpetually, but also because the role of drag (more specifically the role of the local drag) has two different facets, contributing at the same time to global dissipation and to driving forces. This causes situations where a strong drag is not necessarily equivalent to inefficient systems. A lot of living systems are precisely using strong sources of drag to optimize their performance. In addition to revisiting classical results under the light of recent research on these questions, we discuss in this review the crucial role of drag from another point of view that concerns the fluid-structure interaction problem of animal locomotion. We consider, in particular, the dynamic subtleties brought by the quadratic drag that resists transverse motions of a flexible body or appendage performing complex kinematics, such as the phase dynamics of a flexible flapping wing, the propagative nature of the bending wave in undulatory swimmers, or the surprising relevance of drag-based resistive thrust in inertial swimmers.


Assuntos
Hidrodinâmica , Modelos Biológicos , Natação/fisiologia , Animais , Fenômenos Biomecânicos
3.
J R Soc Interface ; 13(123)2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27798281

RESUMO

In this work, we address the case of red nose tetra fish Hemigrammus bleheri swimming in groups in a uniform flow, giving special attention to the basic interactions and cooperative swimming of a single pair of fish. We first bring evidence of synchronization of the two fish, where the swimming modes are dominated by 'out-phase' and 'in-phase' configurations. We show that the transition to this synchronization state is correlated with the swimming speed (i.e. the flow rate), and thus with the magnitude of the hydrodynamic pressure generated by the fish body during each swimming cycle. From a careful spatio-temporal analysis corresponding to those synchronized modes, we characterize the distances between the two individuals in a pair in the basic schooling pattern. We test the conclusions of the analysis of fish pairs with a second set of experiments using groups of three fish. By identifying the typical spatial configurations, we explain how the nearest neighbour interactions constitute the building blocks of collective fish swimming.


Assuntos
Comportamento Animal/fisiologia , Characidae/fisiologia , Comportamento Social , Natação/fisiologia , Animais
4.
Artigo em Inglês | MEDLINE | ID: mdl-26382334

RESUMO

In this Rapid Communication, we address a crucial point regarding the description of moderate to high Reynolds numbers aquatic swimmers. For decades, swimming animals have been classified in two different families of propulsive mechanisms based on the Reynolds number: the resistive swimmers, using local friction to produce the necessary thrust force for locomotion at low Reynolds number, and the reactive swimmers, lying in the high Reynolds range, and using added mass acceleration (described by perfect fluid theory). However, inertial swimmers are also systems that dissipate energy, due to their finite size, therefore involving strong resistive contributions, even for high Reynolds numbers. Using a complete model for the hydrodynamic forces, involving both reactive and resistive contributions, we revisit here the physical mechanisms responsible for the thrust production of such swimmers. We show, for instance, that the resistive part of the force balance is as crucial as added mass effects in the modeling of the thrust force, especially for elongated species. The conclusions brought by this work may have significant contributions to the understanding of complex swimming mechanisms, especially for the future design of artificial swimmers.

5.
Phys Rev Lett ; 112(24): 244301, 2014 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-24996090

RESUMO

We investigate the mechanics of thin sheets decorated by noninteracting creases. The system considered here consists of parallel folds connected by elastic panels. We show that the mechanical response of the creased structure is twofold, depending both on the bending deformation of the panels and the hingelike intrinsic response of the crease. We show that a characteristic length scale, defined by the ratio of bending to hinge energies, governs whether the structure's response consists in angle opening or panel bending when a small load is applied. The existence of this length scale is a building block for future works on origami mechanics.

6.
Phys Rev Lett ; 107(2): 025506, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21797621

RESUMO

When a thin sheet is crumpled, creases form in which plastic deformations are localized. Here we study experimentally the relaxation process of a single fold in a thin sheet subjected to an external strain. The unfolding process is described by a quick opening at first and then a progressive slow relaxation of the crease. In the latter regime, the necessary force needed to open the folded sheet at a given displacement is found to decrease logarithmically in time, allowing its description through an Arrhenius activation process. We accurately determine the parameters of this law and show its general character by performing experiments on both Mylar and paper sheets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...