Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(19)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37835700

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been reported in multiple animal species besides humans. The goal of this study was to report clinical signs, infection progression, virus detection and antibody response in a group of wild felids housed in adjacent but neighboring areas at the Pittsburgh Zoo. Initially, five African lions (Panthera leo krugeri) housed together exhibited respiratory clinical signs with viral shedding in their feces in March of 2021 coinciding with infection of an animal keeper. During the second infection wave in December 2021, four Amur tigers (Panthera tigris altaica) and a Canadian lynx (Lynx canadensis) showed clinical signs and tested positive for viral RNA in feces. In infected animals, viral shedding in feces was variable lasting up to 5 weeks and clinical signs were observed for up to 4 weeks. Despite mounting an antibody response to initial exposure, lions exhibited respiratory clinical signs during the second infection wave, but none shed the virus in their feces. The lions were positive for alpha variant (B.1.1.7 lineage) during the first wave and the tiger and lynx were positive for delta variant (AY.25.1. lineage) during the second wave. The viruses recovered from felids were closely related to variants circulating in human populations at the time of the infection. Cheetahs (Acinonyx jubatus) in the park did not show either the clinical signs or the antibody response.

2.
J Vet Diagn Invest ; 35(1): 62-66, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36373552

RESUMO

Neorickettsia risticii, an obligate intracellular bacterium, is the causative agent of Potomac horse fever (PHF). Diagnosis of PHF is based on demonstration of serum antibodies, isolation of N. risticii, and/or detection of nucleic acid by a PCR assay. An existing real-time PCR assay targeting the N. risticii 16S rRNA has been validated using blood samples from horses with colitis, and snails; to our knowledge, the performance of the assay for other sample types has not been reported. We describe here a modification of the 16S rRNA gene assay by the addition of a set of primers and probe targeting the N. risticii p51 gene to form a duplex assay. We validated the new assay using diagnostic specimens from 56 horses with suspected PHF. The assay consistently detected down to 5 copies of synthetic targets, and did not show any cross-reaction with common equine enteric pathogens. Although we did not establish the diagnostic sensitivity and specificity of the duplex assay, results for both gene targets were in complete agreement, with the exception of 4 fecal samples that tested positive for the 16S rRNA gene only. Further analysis indicated that testing of fecal samples using our 16S rRNA gene assay alone can produce a false-positive result.


Assuntos
Infecções por Anaplasmataceae , Doenças dos Cavalos , Neorickettsia risticii , Cavalos/genética , Animais , Neorickettsia risticii/genética , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Infecções por Anaplasmataceae/diagnóstico , Infecções por Anaplasmataceae/veterinária , Infecções por Anaplasmataceae/microbiologia , Doenças dos Cavalos/microbiologia
3.
J Am Vet Med Assoc ; 260(14): 1834-1838, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36094906

RESUMO

OBJECTIVE: To determine the prevalence of Anaplasma phagocytophilum and Borrelia burgdorferi infections in Pennsylvania horses. ANIMALS: 271 horses. PROCEDURES: A survey was conducted with PCR and serology to evaluate anaplasmosis and Lyme disease infections in horses from Pennsylvania that were suspected for tick-borne infection. RESULTS: A phagocytophilum was detected in 19/271 (7.0%) Pennsylvania horses tested by the duplex PCR. B burgdorferi was not detected in any horse blood tested by PCR. Overall, 120/271 (44.3%) horses tested positive for presence of A phagocytophilum antibodies by at least the IDEXX SNAP 4Dx Plus lateral flow immunosorbent (SNAP) or indirect fluorescent antibody (IFA) assay, with 69 (25.5%) testing positive by both SNAP and IFA; 43 (15.9%) tested positive by IFA only, and 8 (3.0%) tested positive by SNAP only. Similarly, 209/271 (77.1%) horses tested positive for the presence of B burgdorferi antibodies by at least 1 test, with 139 (51.3%) testing positive by both SNAP and IFA; 45 (16.6%) tested positive by SNAP only, and 25 (9.2%) tested positive by IFA. CLINICAL RELEVANCE: Both A phagocytophilum and B burgdorferi are important tick-borne infections. The study provides prevalence data for both A phagocytophilum and B burgdorferi and compares test performance. For serologic detection, IFA detected antibodies to A phagocytophilum in a higher proportion (41.3%) of horses compared to SNAP (28.4%), while SNAP detected antibodies to B burgdorferi in a higher proportion (67.9%) of horses compared to IFA (60.5%). Both diseases showed a high seroprevalence in all areas surveyed.


Assuntos
Anaplasma phagocytophilum , Borrelia burgdorferi , Ehrlichiose , Doenças dos Cavalos , Doença de Lyme , Doenças Transmitidas por Carrapatos , Cavalos , Animais , Ehrlichiose/epidemiologia , Ehrlichiose/veterinária , Estudos Soroepidemiológicos , Prevalência , Pennsylvania , Anticorpos Antibacterianos , Doença de Lyme/diagnóstico , Doença de Lyme/epidemiologia , Doença de Lyme/veterinária , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/veterinária
4.
J Vet Diagn Invest ; 34(2): 268-272, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35075947

RESUMO

Erysipelothrix rhusiopathiae infection and septicemia occurred in a 5-d old Boer goat found dead on a farm in western Pennsylvania. On autopsy, there was moderate, focally extensive hemorrhage along the remnants of the urachus and umbilical arteries and the apex of the urinary bladder. Microscopic examination of immunohistochemical stained tissues revealed abundant intracellular and extracellular E. rhusiopathiae antigen-positive bacilli in all tissues stained, including lung, heart, liver, skeletal muscle, kidney, and thymus. Bacteria isolated from liver and urachus were identified as E. rhusiopathiae by MALDI-TOF mass spectrometry and further confirmed by a PCR assay. An epidemiologic investigation was conducted via an on-farm questionnaire after the owners noted a 70% mortality rate from the 2019 kidding season. The epidemiologic investigation showed that E. rhusiopathiae, an opportunistic zoonotic organism, was introduced to the farm through a breach in biosecurity and was likely perpetuated among the resident poultry species.


Assuntos
Erisipela , Infecções por Erysipelothrix , Erysipelothrix , Doenças das Cabras , Animais , Surtos de Doenças/veterinária , Erisipela/epidemiologia , Erisipela/veterinária , Infecções por Erysipelothrix/microbiologia , Fazendas , Doenças das Cabras/epidemiologia , Cabras , Pennsylvania/epidemiologia
5.
Vet Med Sci ; 8(2): 899-906, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34910368

RESUMO

BACKGROUND AND OBJECTIVES: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), besides causing human infection, has been shown to naturally infect several susceptible animal species including large cats (tigers, lions, pumas, spotted leopards), dogs, cats, ferrets, gorillas and minks. Cats and minks are continuing to be the most reported species with SARS-CoV-2 infections among animals but it needs to be investigated further. METHODS AND RESULTS: We report the detection of SARS-CoV-2 from a domestic cat that exhibited respiratory disease after being exposed to SARS-CoV-2 virus from humans in the same household. SARS-CoV-2 RNA was detected in two oropharyngeal swabs collected at two time points, 11 days apart; the first, when the cat was reported to be sick and the second, before euthanasia due to poor prognosis. The viral nucleic acid detected at two time points showed no genomic variation and resembled the clade GH circulating in humans in the United States. Clinical and pathological findings noted in this 16-year-old cat were consistent with respiratory and cardiac insufficiency. CONCLUSIONS: SARS-CoV-2 viral infection was likely an incidental clinical finding, as the virus was not detected in fixed lungs, heart, or kidney tissues. Only fresh lung tissue collected at necropsy showed the presence of viral nucleic acid, albeit at a very low level. Further research is needed to clarify the clinical course of SARS-CoV-2 in companion animals of advanced age and underlying cardiac disease.


Assuntos
COVID-19 , Doenças do Gato , Animais , COVID-19/epidemiologia , COVID-19/transmissão , COVID-19/veterinária , Doenças do Gato/diagnóstico , Doenças do Gato/epidemiologia , Gatos , Humanos , Pennsylvania/epidemiologia , RNA Viral/genética , SARS-CoV-2
6.
Front Vet Sci ; 8: 673193, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34179165

RESUMO

Metagenomic sequencing of clinical diagnostic specimens has a potential for unbiased detection of infectious agents, diagnosis of polymicrobial infections and discovery of emerging pathogens. Herein, next generation sequencing (NGS)-based metagenomic approach was used to investigate the cause of illness in a subset of horses recruited for a tick-borne disease surveillance study during 2017-2019. Blood samples collected from 10 horses with suspected tick-borne infection and five apparently healthy horses were subjected to metagenomic analysis. Total genomic DNA extracted from the blood samples were enriched for microbial DNA and subjected to shotgun next generation sequencing using Nextera DNA Flex library preparation kit and V2 chemistry sequencing kit on the Illumina MiSeq sequencing platform. Overall, 0.4-0.6 million reads per sample were analyzed using Kraken metagenomic sequence classification program. The taxonomic classification of the reads indicated that bacterial genomes were overrepresented (0.5 to 1%) among the total microbial reads. Most of the bacterial reads (~91%) belonged to phyla Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, Cyanobacteria and Tenericutes in both groups. Importantly, 10-42.5% of Alphaproteobacterial reads in 5 of 10 animals with suspected tick-borne infection were identified as Anaplasma phagocytophilum. Of the 5 animals positive for A. phagocytophilum sequence reads, four animals tested A. phagocytophilum positive by PCR. Two animals with suspected tick-borne infection and A. phagocytophilum positive by PCR were found negative for any tick-borne microbial reads by metagenomic analysis. The present study demonstrates the usefulness of the NGS-based metagenomic analysis approach for the detection of blood-borne microbes.

7.
Front Vet Sci ; 8: 604675, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33644143

RESUMO

Streptococcus equi subspecies zooepidemicus, a zoonotic bacterial pathogen caused a series of outbreaks with high mortality affecting swine herds in multiple locations of the USA and Canada in 2019. Further genetic analysis revealed that this agent clustered with ATCC 35246, a S. zooepidemicus strain associated with high mortality outbreaks in swine herds of China originally reported in 1977. Rapid and accurate diagnosis is absolutely critical for controlling and limiting further spread of this emerging disease of swine. Currently available diagnostic methods including bacteriological examination and PCR assays do not distinguish between the virulent strains and avirulent commensal strains of S. zooepidemicus, which is critical given that this pathogen is a normal inhabitant of the swine respiratory tract. Based on comparative analyses of whole genome sequences of the virulent isolates and avirulent sequences, we identified a region in the SzM gene that is highly conserved and restricted to virulent S. zooepidemicus strains. We developed and validated a novel probe-based real-time PCR targeting the conserved region of SzM. The assay was highly sensitive and specific to the virulent swine isolates of Streptococcus equi subspecies zooepidemicus. No cross reactivity was observed with avirulent S. zooepidemicus isolates as well as other streptococcal species and a panel of porcine respiratory bacterial and viral pathogens. The PCR efficiency of the assay was 96.64 % and was able to detect as little as 20 fg of the bacterial DNA. We then validated the diagnostic sensitivity and specificity of the new PCR assay using a panel of clinical samples (n = 57) and found that the assay has 100% sensitivity and specificity as compared to bacteriological culture method. In summary, the PCR assay will be an extremely valuable tool for the rapid accurate detection of virulent swine S. zooepidemicus isolates and directly from clinical samples.

8.
J Vet Diagn Invest ; 33(2): 375-378, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33525989

RESUMO

Johne's disease (paratuberculosis) is an economically important disease of cattle worldwide. The disease is caused by Mycobacterium avium subsp. paratuberculosis (MAP), a fastidious gram-positive bacterium. PCR is increasingly used in diagnostic laboratories for the detection of MAP in fecal samples given the rapid test turnaround time and sensitivity and specificity comparable to fecal culture. However, efficient extraction of DNA for sensitive detection of MAP by PCR is affected by the complex lipid-rich cell wall of MAP and the presence of PCR inhibitors in feces. We evaluated a high-throughput nucleic acid extraction method (MagMAX core nucleic acid purification kit with mechanical lysis module) in conjunction with an hspX gene PCR for the detection of MAP from bovine fecal samples, which resulted in correct identification of all negative (13 of 13) and positive (35 of 35) proficiency test samples obtained from the National Veterinary Services Laboratories. In addition, all 6 negative and 50 of 51 positive diagnostic specimens tested were categorized correctly.


Assuntos
Doenças dos Bovinos/diagnóstico , Sequenciamento de Nucleotídeos em Larga Escala/veterinária , Mycobacterium avium subsp. paratuberculosis/isolamento & purificação , Paratuberculose/diagnóstico , Reação em Cadeia da Polimerase/veterinária , Animais , Técnicas Bacteriológicas/métodos , Técnicas Bacteriológicas/veterinária , Bovinos , Fezes/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos
9.
Microbiol Resour Announc ; 9(42)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33060275

RESUMO

Draft genome sequences of two outbreak isolates of Streptococcus equi subsp. zooepidemicus from a Pennsylvania swine herd affected with high mortality and morbidity are reported here. The genome analysis revealed that the isolates are closely related to a virulent strain originally identified in China.

10.
Vector Borne Zoonotic Dis ; 20(6): 406-411, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31976829

RESUMO

Ixodes scapularis, the black-legged tick, harbors multiple organisms and transmits several pathogens to animals and humans. To determine the presence of tick-borne microorganisms carried by I. scapularis in Pennsylvania, 299 adult I. scapularis ticks were collected from across the state and tested with a multiplex bead panel targeting 20 microorganisms. The Luminex bead-based xMAP® MultiFLEX Mega Tick Panel detected microorganisms in these ticks, including Anaplasma spp. (1.7%), Borrelia spp. (45.8%), Babesia spp. (16.1%), and Rickettsia spp. (22.1%) at the genera level and identified Anaplasma phagocytophilum (1.7%), Babesia microti (0.7%), Borrelia burgdorferi sensu stricto (45.5%), Borrelia miyamotoi (0.3%), and Rickettsia parkeri (0.7%) at the species level. Babesia spp. reactivity was found to be due to Ba. odocoilei, and Rickettsia spp. reactivity was mainly due to rickettsial endosymbionts.


Assuntos
Anaplasma/isolamento & purificação , Babesia/isolamento & purificação , Borrelia/isolamento & purificação , Ixodes/microbiologia , Reação em Cadeia da Polimerase/métodos , Rickettsia/isolamento & purificação , Anaplasma/classificação , Animais , Borrelia/classificação , DNA/genética , Pennsylvania , Rickettsia/classificação
11.
BMC Vet Res ; 15(1): 130, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-31060608

RESUMO

BACKGROUND: Antimicrobial resistance (AMR) of bacterial pathogens is an emerging public health threat. This threat extends to pets as it also compromises our ability to treat their infections. Surveillance programs in the United States have traditionally focused on collecting data from food animals, foods, and people. The Veterinary Laboratory Investigation and Response Network (Vet-LIRN), a national network of 45 veterinary diagnostic laboratories, tested the antimicrobial susceptibility of clinically relevant bacterial isolates from animals, with companion animal species represented for the first time in a monitoring program. During 2017, we systematically collected and tested 1968 isolates. To identify genetic determinants associated with AMR and the potential genetic relatedness of animal and human strains, whole genome sequencing (WGS) was performed on 192 isolates: 69 Salmonella enterica (all animal sources), 63 Escherichia coli (dogs), and 60 Staphylococcus pseudintermedius (dogs). RESULTS: We found that most Salmonella isolates (46/69, 67%) had no known resistance genes. Several isolates from both food and companion animals, however, showed genetic relatedness to isolates from humans. For pathogenic E. coli, no resistance genes were identified in 60% (38/63) of the isolates. Diverse resistance patterns were observed, and one of the isolates had predicted resistance to fluoroquinolones and cephalosporins, important antibiotics in human and veterinary medicine. For S. pseudintermedius, we observed a bimodal distribution of resistance genes, with some isolates having a diverse array of resistance mechanisms, including the mecA gene (19/60, 32%). CONCLUSION: The findings from this study highlight the critical importance of veterinary diagnostic laboratory data as part of any national antimicrobial resistance surveillance program. The finding of some highly resistant bacteria from companion animals, and the observation of isolates related to those isolated from humans demonstrates the public health significance of incorporating companion animal data into surveillance systems. Vet-LIRN will continue to build the infrastructure to collect the data necessary to perform surveillance of resistant bacteria as part of fulfilling its mission to advance human and animal health. A One Health approach to AMR surveillance programs is crucial and must include data from humans, animals, and environmental sources to be effective.


Assuntos
Bactérias/efeitos dos fármacos , Bactérias/genética , Laboratórios/normas , Saúde Única , Medicina Veterinária/organização & administração , Sequenciamento Completo do Genoma , Animais , Infecções Bacterianas/epidemiologia , Infecções Bacterianas/microbiologia , Infecções Bacterianas/veterinária , Canadá/epidemiologia , Estados Unidos/epidemiologia
12.
Vet Parasitol ; 269: 2-6, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31079823

RESUMO

Neospora caninum is an apicomplexan protozoan parasite that is a leading cause of abortion in cattle. Detection of parasite-specific DNA by PCR is a highly sensitive method for identifying the presence of N. caninum in a variety of tissues. We developed and validated a probe-based real-time PCR assay targeting the conserved Nc5 gene of N. caninum. Using N. caninum strain Nc-1 genomic DNA and a synthetic gene fragment as amplification standards, we determined the PCR amplification efficiency and the limit of detection to be 95.60% and 3 copies, respectively. Five pathogens frequently associated with bovine abortions, namely bovine viral diarrhea virus types I and II, bovine alphaherpesvirus-1, Chlamydia, and Leptospira, were tested to ensure analytical exclusivity. A total of 103 clinical samples from aborted fetuses were tested concurrently with a standard conventional PCR and the new probe-based real-time PCR assay. All tested samples showed 100% agreement between these two assays. In conclusion, the probe-based real-time PCR assay facilitates accurate and rapid detection of N. caninum from abortions in cattle.


Assuntos
Aborto Animal/diagnóstico , Doenças dos Bovinos/diagnóstico , Coccidiose/veterinária , Neospora/isolamento & purificação , Complicações Parasitárias na Gravidez/veterinária , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Feto Abortado/parasitologia , Aborto Animal/parasitologia , Animais , Encéfalo/parasitologia , Bovinos , Doenças dos Bovinos/parasitologia , Coccidiose/diagnóstico , Coccidiose/parasitologia , Primers do DNA/genética , Sondas de DNA/genética , Feminino , Coração/parasitologia , Neospora/genética , Gravidez , Complicações Parasitárias na Gravidez/diagnóstico , Complicações Parasitárias na Gravidez/parasitologia
14.
J Vet Diagn Invest ; 29(4): 586-588, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28381135

RESUMO

Brucella canis was recovered from dogs that were canine brucellosis suspect by blood culture using a modified lysis method. Organism identity was established by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The instrument-provided security library identified the isolates as Brucella species. The isolates were further identified as B. canis with the help of phenotypic and genotypic characteristics. The mass spectral profiles from characterized B. canis isolates, when added to the MALDI-TOF MS standard reference library, allowed successful presumptive identification of B. canis.


Assuntos
Hemocultura/veterinária , Brucella canis/isolamento & purificação , Brucelose/veterinária , Doenças do Cão/diagnóstico , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/veterinária , Animais , Hemocultura/métodos , Brucelose/diagnóstico , Brucelose/microbiologia , Doenças do Cão/microbiologia , Cães , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
15.
J Infect Dis ; 211(3): 452-61, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24990203

RESUMO

BACKGROUND: Human ehrlichioses are emerging life-threatening diseases transmitted by ticks. Animal models have been developed to study disease development; however, there is no valid small animal model that uses a human ehrlichial pathogen. The objective of this study was to develop a mouse model for ehrlichiosis with the newly discovered human pathogen, Ehrlichia muris-like agent (EMLA). METHODS: Three strains of mice were inoculated with different doses of EMLA by the intravenous, intraperitoneal, or intradermal route and evaluated for clinical and pathologic changes during the course of infection. RESULTS: EMLA infected C57Bl/6, BALB/c, and C3H/HeN mice and induced lethal or persistent infection in a route- and dose-dependent manner. The clinical chemistry and hematologic changes were similar to those of human infection by Ehrlichia chaffeensis or EMLA. Bacterial distribution in tissues differed after intradermal infection, compared with the distribution after intravenous or intraperitoneal injection. Lethal infection did not cause remarkable pathologic changes, but it caused fluid imbalance. EMLA infection of endothelium and mononuclear cells likely plays a role in the severe outcome. CONCLUSIONS: The EMLA mouse model mimics human infection and can be used to study pathogenesis and immunity and for development of a vector transmission model of ehrlichiosis.


Assuntos
Ehrlichiose/microbiologia , Animais , Modelos Animais de Doenças , Ehrlichia chaffeensis/patogenicidade , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Carrapatos/microbiologia
16.
Infect Immun ; 82(10): 4092-103, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25024370

RESUMO

Diverse pathogens have evolved to survive and replicate in the endosomes or phagosomes of the host cells and establish persistent infection. Ehrlichiae are Gram-negative, intracellular bacteria that are transmitted by ticks. Ehrlichiae reside in the endosomes of the host phagocytic or endothelial cells and establish persistent infection in their vertebrate reservoir hosts. CD4(+) T cells play a critical role in protection against phagosomal infections. In the present study, we investigated the expansion, maintenance, and functional status of antigen-specific CD4(+) T cells during persistent Ehrlichia muris infection in wild-type and interleukin-10 (IL-10)-deficient mice. Our study indicated that early induction of IL-10 led to reduced inflammatory responses and impaired bacterial clearance during persistent Ehrlichia infection. Notably, we demonstrated that the functional production of gamma interferon (IFN-γ) by antigen-specific CD4(+) T cells maintained during a persistent phagosomal infection progressively deteriorates. The functional loss of IFN-γ production by antigen-specific CD4(+) T cells was reversed in the absence of IL-10. Furthermore, we demonstrated that transient blockade of IL-10 receptor during the T cell priming phase early in infection was sufficient to enhance the magnitude and the functional capacity of antigen-specific effector and memory CD4(+) T cells, which translated into an enhanced recall response. Our findings provide new insights into the functional status of antigen-specific CD4(+) T cells maintained during persistent phagosomal infection. The study supports the concept that a better understanding of the factors that influence the priming and differentiation of CD4(+) T cells may provide a basis to induce a protective immune response against persistent infections.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Proliferação de Células , Ehrlichia/imunologia , Ehrlichiose/imunologia , Interleucina-10/imunologia , Fagossomos/microbiologia , Animais , Ehrlichia/crescimento & desenvolvimento , Ehrlichiose/microbiologia , Feminino , Humanos , Interferon gama/biossíntese , Camundongos , Camundongos Endogâmicos C57BL
17.
Genome Announc ; 2(1)2014 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-24482514

RESUMO

We report here the complete genome sequence of Ehrlichia muris strain AS145(T), which was isolated from a wild mouse in 1983 in Japan. E. muris establishes persistent infections in laboratory mice and is widely used as a surrogate pathogen in a murine model of ehrlichiosis.

18.
Vaccine ; 31(50): 5960-7, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24144475

RESUMO

Ehrlichioses are emerging tick-borne bacterial diseases of humans and animals for which no vaccines are available. The diseases are caused by obligately intracellular bacteria belonging to the genus Ehrlichia. Several immunoreactive proteins of ehrlichiae have been identified based on their reactivity with immune sera from human patients and animals. These include the major outer membrane proteins, ankyrin repeat proteins and tandem repeat proteins (TRP). Polyclonal antibodies directed against the tandem repeats (TRs) of Ehrlichia chaffeensis TRP32, TRP47 and TRP120 have been shown to provide protection in mice. In the present study, we evaluated E. muris P29, which is the ortholog of E. chaffeensis TRP47 and E. canis TRP36, as a subunit vaccine in a mouse model of ehrlichiosis. Our study indicated that unlike E. chaffeensis TRP47 and E. canis TRP36, orthologs of E. muris (P29) and E. muris-like agent (EMLA) do not contain tandem repeats. Immunization of mice with recombinant E. muris P29 induced significant protection against a challenge infection. The protection induced by E. muris P29 was associated with induction of strong antibody responses. In contrast to development of P29-specific IgG antibodies following immunization, development of P29-specific IgG antibodies, but not IgM antibodies, was impaired during persistent E. muris infection. Furthermore, our study indicated that CD4+ T cells target P29 during E. muris infection and differentiate into IFN-γ-producing Th1 effector/memory cells. In conclusion, our study indicated that orthologs of E. muris P29 showed considerable variation in the central tandem repeat region among different species, induction of P29-specific IgG antibody response was impaired during persistent E. muris infection, and rP29 induced protective immune responses.


Assuntos
Proteínas de Bactérias/imunologia , Vacinas Bacterianas/imunologia , Ehrlichia/imunologia , Ehrlichiose/prevenção & controle , Animais , Anticorpos Antibacterianos/sangue , Proteínas de Bactérias/genética , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/genética , Linfócitos T CD4-Positivos/imunologia , DNA Bacteriano/química , DNA Bacteriano/genética , Modelos Animais de Doenças , Ehrlichia/genética , Ehrlichiose/imunologia , Feminino , Memória Imunológica , Interferon gama/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Análise de Sequência de DNA , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
19.
PLoS One ; 6(11): e27981, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22114733

RESUMO

BACKGROUND: Recent advances in bioinformatics have made it possible to predict the B cell and T cell epitopes of antigenic proteins. This has led to design of peptide based vaccines that are more specific, safe, and easy to produce. The obligately intracellular gram negative bacteria Ehrlichia cause ehrlichioses in humans and animals. As yet there are no vaccines to protect against Ehrlichia infection. METHODOLOGY/PRINCIPAL FINDINGS: We applied the principle of structural vaccinology to design peptides to the epitopes of Ehrlichia muris outer membrane P28-19 (OMP-1/P28) and Ehrlichia Heat shock protein 60 (Hsp60/GroEL) antigenic proteins. Both P28-19 and Ehrlichia Hsp60 peptides reacted with polyclonal antibodies against E. canis and E. chaffeensis and could be used as a diagnostic tool for ehrlichiosis. In addition, we demonstrated that mice vaccinated with Ehrlichia P28-19 and Hsp60 peptides and later challenged with E. muris were protected against the pathogen. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate the power of structural vaccines and could be a new strategy in the development of vaccines to provide protection against pathogenic microorganisms.


Assuntos
Proteínas da Membrana Bacteriana Externa/imunologia , Vacinas Bacterianas/química , Vacinas Bacterianas/uso terapêutico , Chaperonina 60/imunologia , Ehrlichia/imunologia , Ehrlichiose/prevenção & controle , Sequência de Aminoácidos , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Linfócitos T CD4-Positivos/imunologia , Chaperonina 60/química , Chaperonina 60/genética , Ehrlichia/genética , Ehrlichia/metabolismo , Ehrlichiose/imunologia , Ehrlichiose/microbiologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Células Th1/imunologia
20.
Clin Vaccine Immunol ; 18(12): 2018-25, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22030371

RESUMO

The obligately intracellular bacterium Ehrlichia chaffeensis that resides in mononuclear phagocytes is the etiologic agent of human monocytotropic ehrlichiosis (HME). HME is an emerging and often life-threatening, tick-transmitted infectious disease in the United States. Effective primary immune responses against Ehrlichia infection involve generation of Ehrlichia-specific gamma interferon (IFN-γ)-producing CD4(+) T cells and cytotoxic CD8(+) T cells, activation of macrophages by IFN-γ, and production of Ehrlichia-specific antibodies of the Th1 isotype. Currently, there are no vaccines available against HME. We evaluated the ability of 28-kDa outer membrane proteins (P28-OMP-1) of the closely related Ehrlichia muris to stimulate long-term protective memory T and B cell responses and confer protection in mice. The spleens of mice vaccinated with E. muris P28-9, P28-12, P28-19, or a mixture of these three P28 proteins (P28s) using a DNA prime-protein boost regimen and challenged with E. muris had significantly lower bacterial loads than the spleens of mock-vaccinated mice. Mice immunized with P28-9, P28-12, P28-19, or the mixture induced Ehrlichia-specific CD4(+) Th1 cells. Interestingly, mice immunized with P28-14, orthologs of which in E. chaffeensis and E. canis are primarily expressed in tick cells, failed to lower the ehrlichial burden in the spleen. Immunization with the recombinant P28-19 protein alone also significantly decreased the bacterial load in the spleen and liver compared to those of the controls. Our study reports, for the first time, the protective roles of the Ehrlichia P28-9 and P28-12 proteins in addition to confirming previous reports of the protective ability of P28-19. Partial protection induced by immunization with P28-9, P28-12, and P28-19 against Ehrlichia was associated with the generation of Ehrlichia-specific cell-mediated and humoral immune responses.


Assuntos
Proteínas da Membrana Bacteriana Externa/imunologia , Vacinas Bacterianas/imunologia , Ehrlichia/imunologia , Ehrlichiose/prevenção & controle , Imunização/métodos , Vacinas de DNA/imunologia , Animais , Carga Bacteriana , Proteínas da Membrana Bacteriana Externa/genética , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/genética , Linfócitos T CD4-Positivos/imunologia , Ehrlichia/genética , Ehrlichiose/imunologia , Humanos , Fígado/microbiologia , Camundongos , Baço/microbiologia , Células Th1/imunologia , Estados Unidos , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...