Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IET Nanobiotechnol ; 15(4): 348-357, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34694709

RESUMO

In the last decade, carbon-based nanostructures such as buckyball (C60 ), carbon nanotube (CNT), graphene and three-dimensional (3D) graphene have been identified as promising materials for electronic, electrochemical energy storage (batteries and supercapacitors), optical and sensing applications. Since the discovery of graphene in 2004, scientists have devised mass production techniques and explored graphene as a promising material for a wide range of applications. Most of the electronic and solar cell applications require materials with good electronic conductivity, mobility and finite bandgap. Graphene is a zero bandgap material which prevents it from the mainstream applications. On the other hand, 3D graphene has good electronic conductivity, mobility, bandgap and electrochemical properties. This review article will focus on the synthesis of the 3D graphene, its structure-property relationships, biotechnology and electronic applications and the hidden properties that are yet to be explored fully.


Assuntos
Grafite , Nanoestruturas , Nanotubos de Carbono , Biotecnologia , Eletrônica
2.
ACS Appl Mater Interfaces ; 9(25): 21457-21463, 2017 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-28574699

RESUMO

We have discovered a carbonized polymer film to be a reliable and durable carbon-based substrate for carbon enhanced Raman scattering (CERS). Commercially available SU8 was spin coated and carbonized (c-SU8) to yield a film optimized to have a favorable Fermi level position for efficient charge transfer, which results in a significant Raman scattering enhancement under mild measurement conditions. A highly sensitive CERS (detection limit of 10-8 M) that was uniform over a large area was achieved on a patterned c-SU8 film and the Raman signal intensity has remained constant for 2 years. This approach works not only for the CMOS-compatible c-SU8 film but for any carbonized film with the correct composition and Fermi level, as demonstrated with carbonized-PVA (poly(vinyl alcohol)) and carbonized-PVP (polyvinylpyrollidone) films. Our study certainly expands the rather narrow range of Raman-active material platforms to include robust carbon-based films readily obtained from polymer precursors. As it uses broadly applicable and cheap polymers, it could offer great advantages in the development of practical devices for chemical/bio analysis and sensors.

3.
Nanoscale ; 6(20): 11646-52, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25154383

RESUMO

In this letter, we report a facile approach to improve the capacitor properties of nickel hydroxide (Ni(OH)2) by simply coating gold nanoparticles (Au NPs) on the surface of Ni(OH)2. Au NP-deposited Ni(OH)2 (Au/Ni(OH)2) has been prepared by application of a conventional colloidal coating of Au NPs on the surface of 3D-Ni(OH)2 synthesized via a hydrothermal method. Compared with pristine Ni(OH)2, Au/Ni(OH)2 shows a 41% enhanced capacitance value, excellent rate capacitance behavior at high current density conditions, and greatly improved cycling stability for supercapacitor applications. The specific capacitance of Au/Ni(OH)2 reached 1927 F g(-1) at 1 A g(-1), which is close to the theoretical capacitance and retained 66% and 80% of the maximum value at a high current density of 20 A g(-1) and 5000 cycles while that of pristine Ni(OH)2 was 1363 F g(-1) and significantly decreased to 48% and 30%, respectively, under the same conditions. The outstanding performance of Au/Ni(OH)2 as a supercapacitor is attributed to the presence of metal Au NPs on the surface of semiconductor Ni(OH)2; this permits the creation of virtual 3D conducting networks via metal/semiconductor contact, which induces fast electron and ion transport by acting as a bridge between Ni(OH)2 nanostructures, thus eventually leading to significantly improved electrochemical capacitive behaviors, as confirmed by the EIS and I-V characteristic data.

4.
Nanoscale ; 5(14): 6254-60, 2013 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-23733045

RESUMO

A gold nanoparticle-coated and surface-textured TiO2 inverse opal (Au/st-TIO) structure that provides a dramatic improvement of photoelectrochemical hydrogen generation has been fabricated by nano-patterning of TiO2 precursors on TiO2 inverse opal (TIO) and subsequent deposition of gold NPs. The surface-textured TiO2 inverse opal (st-TIO) maximizes the photon trapping effects triggered by the large dimensions of the structure while maintaining the adequate surface area achieved by the small dimensions of the structure. Au NPs are incorporated to further improve photoconversion efficiency in the visible region via surface plasmon resonance. st-TIO and Au/st-TIO exhibit a maximum photocurrent density of ∼0.58 mA cm(-2) and ∼0.8 mA cm(-2), which is 2.07 and 2.86 times higher than that of bare TIO, respectively, at an applied bias of +0.5 V versus an Ag/AgCl electrode under AM 1.5 G simulated sunlight illumination via a photocatalytic hydrogen generation reaction. The excellent performance of the surface plasmon-enhanced mesoporous st-TIO structure suggests that tailoring the nanostructure to proper dimensions, and thereby obtaining excellent light absorption, can maximize the efficiency of a variety of photoconversion devices.


Assuntos
Ouro/química , Luz , Nanoestruturas/química , Titânio/química , Eletrodos , Hidrogênio/química , Nanoestruturas/ultraestrutura , Propriedades de Superfície , Água/química
5.
Nanoscale ; 5(5): 1836-42, 2013 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-23381682

RESUMO

Dual-scale diamond-shaped gold nanostructures (d-DGNs) with larger scale diamond-shaped gold nanoposts (DGNs) coupled to smaller scale gold nanoparticles have been fabricated via interference lithography as a highly reliable and efficient substrate for surface enhanced Raman scattering (SERS). The inter- and intra-particle plasmonic fields of d-DGNs are varied by changing the periodicity of the DGNs and the density of gold nanoparticles. Because of the two different length scales in the nanostructures, d-DGNs show multipole plasmonic peaks as well as dipolar plasmonic peaks, leading to a SERS enhancement factor of greater than 10(9). Simulations are carried out by finite-difference time-domain (FDTD) methods to evaluate the dependence of the inter- and intra-particle plasmonic field and the results are in good agreement with the experimentally obtained data. Our studies reveal that the combination of two different length scales is a straightforward approach for achieving reproducible and great SERS enhancement by light trapping in the diamond-shaped larger scale structures as well as efficient collective plasmon oscillation in the small size particles.

6.
Small ; 9(13): 2341-7, 2013 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-23292824

RESUMO

A hierarchically patterned metal/semiconductor (gold nanoparticles/ZnO nanowires) nanostructure with maximized photon trapping effects is fabricated via interference lithography (IL) for plasmon enhanced photo-electrochemical water splitting in the visible region of light. Compared with unpatterned (plain) gold nanoparticles-coated ZnO NWs (Au NPs/ZnO NWs), the hierarchically patterned Au NPs/ZnO NWs hybrid structures demonstrate higher and wider absorption bands of light leading to increased surface enhanced Raman scattering due to the light trapping effects achieved by the combination of two different nanostructure dimensions; furthermore, pronounced plasmonic enhancement of water splitting is verified in the hierarchically patterned Au NPs/ZnO NWs structures in the visible region. The excellent performance of the hierarchically patterned Au NPs/ZnO NWs indicates that the combination of pre-determined two different dimensions has great potential for application in solar energy conversion, light emitting diodes, as well as SERS substrates and photoelectrodes for water splitting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...