Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 205: 116635, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38936000

RESUMO

This study provided a systematic investigation of microplastics in Hong Kong's surface marine waters during the pandemic from 2019 to 2021. Microplastics (2.07 ± 4.00 particles/m3) exhibited significant temporal variations with higher abundance in the wet season, without a consistent trend after the mandatory mask-wearing requirement was announced. The impact of pandemic restrictions on microplastic distribution was found to be relatively minor. However, significant correlations between microplastic abundances and rainfall highlighted the substantial contribution of local emissions through surface runoff. Notably, sites in closer proximity to the Pearl River Delta exhibited higher microplastic abundances, indicating their association with emission sources. The influence of rainfall and adverse weather on marine microplastic loads demonstrated different sensitivities among various locations but can generally last for one month. These results revealed the impact of seasonal rainfall on coastal microplastics and emphasized the need for efforts to reduce microplastic discharge from land-based sources.

2.
Sci Total Environ ; 875: 162661, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36898549

RESUMO

The paper discusses the implementation of Hong Kong's tailor-made sewage surveillance programme led by the Government, which has demonstrated how an efficient and well-organized sewage surveillance system can complement conventional epidemiological surveillance to facilitate the planning of intervention strategies and actions for combating COVID-19 pandemic in real-time. This included the setting up of a comprehensive sewerage network-based SARS-CoV-2 virus surveillance programme with 154 stationary sites covering 6 million people (or 80 % of the total population), and employing an intensive monitoring programme to take samples from each stationary site every 2 days. From 1 January to 22 May 2022, the daily confirmed case count started with 17 cases per day on 1 January to a maximum of 76,991 cases on 3 March and dropped to 237 cases on 22 May. During this period, a total of 270 "Restriction-Testing Declaration" (RTD) operations at high-risk residential areas were conducted based on the sewage virus testing results, where over 26,500 confirmed cases were detected with a majority being asymptomatic. In addition, Compulsory Testing Notices (CTN) were issued to residents, and the distribution of Rapid Antigen Test kits was adopted as alternatives to RTD operations in areas of moderate risk. These measures formulated a tiered and cost-effective approach to combat the disease in the local setting. Some ongoing and future enhancement efforts to improve efficacy are discussed from the perspective of wastewater-based epidemiology. Forecast models on case counts based on sewage virus testing results were also developed with R2 of 0.9669-0.9775, which estimated that up to 22 May 2022, around 2,000,000 people (~67 % higher than the total number of 1,200,000 reported to the health authority, due to various constraints or limitations) had potentially contracted the disease, which is believed to be reflecting the real situation occurring in a highly urbanized metropolis like Hong Kong.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Vigilância Epidemiológica Baseada em Águas Residuárias , Esgotos , Pandemias , Hong Kong/epidemiologia
3.
J Water Health ; 14(1): 97-108, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26837834

RESUMO

A beach water quality prediction system has been developed in Hong Kong using multiple linear regression (MLR) models. However, linear models are found to be weak at capturing the infrequent 'very poor' water quality occasions when Escherichia coli (E. coli) concentration exceeds 610 counts/100 mL. This study uses a classification tree to increase the accuracy in predicting the 'very poor' water quality events at three Hong Kong beaches affected either by non-point source or point source pollution. Binary-output classification trees (to predict whether E. coli concentration exceeds 610 counts/100 mL) are developed over the periods before and after the implementation of the Harbour Area Treatment Scheme, when systematic changes in water quality were observed. Results show that classification trees can capture more 'very poor' events in both periods when compared to the corresponding linear models, with an increase in correct positives by an average of 20%. Classification trees are also developed at two beaches to predict the four-category Beach Water Quality Indices. They perform worse than the binary tree and give excessive false alarms of 'very poor' events. Finally, a combined modelling approach using both MLR model and classification tree is proposed to enhance the beach water quality prediction system for Hong Kong.


Assuntos
Monitoramento Ambiental/métodos , Escherichia coli/fisiologia , Água do Mar/microbiologia , Poluição Química da Água/análise , Qualidade da Água , Praias , Hong Kong , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...