Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 13728, 2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31551434

RESUMO

Hybrid interfaces between distinct quantum systems play a major role in the implementation of quantum networks. Quantum states have to be stored in memories to synchronize the photon arrival times for entanglement swapping by projective measurements in quantum repeaters or for entanglement purification. Here, we analyze the distortion of a single-photon wave packet propagating through a dispersive and absorptive medium with high spectral resolution. Single photons are generated from a single In(Ga)As quantum dot with its excitonic transition precisely set relative to the Cesium D1 transition. The delay of spectral components of the single-photon wave packet with almost Fourier-limited width is investigated in detail with a 200 MHz narrow-band monolithic Fabry-Pérot resonator. Reflecting the excited state hyperfine structure of Cesium, "slow light" and "fast light" behavior is observed. As a step towards room-temperature alkali vapor memories, quantum dot photons are delayed for 5 ns by strong dispersion between the two 1.17 GHz hyperfine-split excited state transitions. Based on optical pumping on the hyperfine-split ground states, we propose a simple, all-optically controllable delay for synchronization of heralded narrow-band photons in a quantum network.

2.
ACS Photonics ; 4(6): 1327-1332, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28670600

RESUMO

Integrated single-photon sources with high photon-extraction efficiency are key building blocks for applications in the field of quantum communications. We report on a bright single-photon source realized by on-chip integration of a deterministic quantum dot microlens with a 3D-printed multilens micro-objective. The device concept benefits from a sophisticated combination of in situ 3D electron-beam lithography to realize the quantum dot microlens and 3D femtosecond direct laser writing for creation of the micro-objective. In this way, we obtain a high-quality quantum device with broadband photon-extraction efficiency of (40 ± 4)% and high suppression of multiphoton emission events with g(2)(τ = 0) < 0.02. Our results highlight the opportunities that arise from tailoring the optical properties of quantum emitters using integrated optics with high potential for the further development of plug-and-play fiber-coupled single-photon sources.

3.
Phys Rev Lett ; 118(23): 233601, 2017 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-28644636

RESUMO

The two-photon dressing of a "three-level ladder" system, here the ground state, the exciton, and the biexciton of a semiconductor quantum dot, leads to new eigenstates and allows one to manipulate the time ordering of the paired photons without unitary postprocessing. We show that, after spectral postselection of the single dressed states, the time ordering of the cascaded photons can be removed or conserved. Our joint experimental and theoretical study demonstrates the high potential of a "ladder" system to be a versatile source of orthogonally polarized, bunched or antibunched pairs of photons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...