Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 103(6-1): 063212, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34271636

RESUMO

Microparticle suspensions in a polarity-switched discharge plasma of the Plasmakristall-4 facility on board the International Space Station exhibit string-like order. As pointed out in [Phys. Rev. Research 2, 033314 (2020)2643-156410.1103/PhysRevResearch.2.033314], the string-order is subject to evolution on the timescale of minutes at constant gas pressure and constant parameters of polarity switching. We perform a detailed analysis of this evolution using the pair correlations and length spectrum of the string-like clusters (SLCs). Average exponential decay rate of the SLC length spectrum is used as a measure of string order. The analysis shows that the improvement of the string-like order is accompanied by the decrease of the thickness of the microparticle suspension, microparticle number density, and total amount of microparticles in the field of view. This suggests that the observed long-term evolution of the string-like order is caused by the redistribution of the microparticles, which significantly modifies the plasma conditions.

2.
Rev Sci Instrum ; 91(6): 061101, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32611046

RESUMO

The transition from old space to new space along with increasing commercialization has a major impact on space flight, in general, and on electric propulsion (EP) by ion thrusters, in particular. Ion thrusters are nowadays used as primary propulsion systems in space. This article describes how these changes related to new space affect various aspects that are important for the development of EP systems. Starting with a historical overview of the development of space flight and of the technology of EP systems, a number of important missions with EP and the underlying technologies are presented. The focus of our discussion is the technology of the radio frequency ion thruster as a prominent member of the gridded ion engine family. Based on this discussion, we give an overview of important research topics such as the search for alternative propellants, the development of reliable neutralizer concepts based on novel insert materials, as well as promising neutralizer-free propulsion concepts. In addition, aspects of thruster modeling and requirements for test facilities are discussed. Furthermore, we address aspects of space electronics with regard to the development of highly efficient electronic components as well as aspects of electromagnetic compatibility and radiation hardness. This article concludes with a presentation of the interaction of EP systems with the spacecraft.

3.
Phys Rev E ; 97(4-1): 043203, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29758751

RESUMO

Three-dimensional plasma crystals are often described as Yukawa systems for which a phase transition between the crystal structures fcc and bcc has been predicted. However, experimental investigations of this transition are missing. We use a fast scanning video camera to record the crystallization process of 70 000 microparticles and investigate the existence of the fcc-bcc phase transition at neutral gas pressures of 30, 40, and 50 Pa. To analyze the crystal, robust phase diagrams with the help of a machine learning algorithm are calculated. This work shows that the phase transition can be investigated experimentally and makes a comparison with numerical results of Yukawa systems. The phase transition is analyzed in dependence on the screening parameter and structural order. We suggest that the transition is an effect of gravitational compression of the plasma crystal. Experimental investigations of the fcc-bcc phase transition will provide an opportunity to estimate the coupling strength Γ by comparison with numerical results of Yukawa systems.

4.
Phys Rev E ; 96(1-1): 011301, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29347271

RESUMO

Machine learning is one of the most popular fields in computer science and has a vast number of applications. In this work we will propose a method that will use a neural network to locally identify crystal structures in a mixed phase Yukawa system consisting of fcc, hcp, and bcc clusters and disordered particles similar to plasma crystals. We compare our approach to already used methods and show that the quality of identification increases significantly. The technique works very well for highly disturbed lattices and shows a flexible and robust way to classify crystalline structures that can be used by only providing particle positions. This leads to insights into highly disturbed crystalline structures.

5.
Rev Sci Instrum ; 87(9): 093505, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27782568

RESUMO

New complex-plasma facility, Plasmakristall-4 (PK-4), has been recently commissioned on board the International Space Station. In complex plasmas, the subsystem of µm-sized microparticles immersed in low-pressure weakly ionized gas-discharge plasmas becomes strongly coupled due to the high (103-104 e) electric charge on the microparticle surface. The microparticle subsystem of complex plasmas is available for the observation at the kinetic level, which makes complex plasmas appropriate for particle-resolved modeling of classical condensed matter phenomena. The main purpose of PK-4 is the investigation of flowing complex plasmas. To generate plasma, PK-4 makes use of a classical dc discharge in a glass tube, whose polarity can be switched with the frequency of the order of 100 Hz. This frequency is high enough not to be felt by the relatively heavy microparticles. The duty cycle of the polarity switching can be also varied allowing to vary the drift velocity of the microparticles and (when necessary) to trap them. The facility is equipped with two videocameras and illumination laser for the microparticle imaging, kaleidoscopic plasma glow observation system and minispectrometer for plasma diagnostics and various microparticle manipulation devices (e.g., powerful manipulation laser). Scientific experiments are programmed in the form of scripts written with the help of specially developed C scripting language libraries. PK-4 is mainly operated from the ground (control center CADMOS in Toulouse, France) with the support of the space station crew. Data recorded during the experiments are later on delivered to the ground on the removable hard disk drives and distributed to participating scientists for the detailed analysis.

6.
Phys Rev E ; 94(3-1): 033207, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27739767

RESUMO

In this work, existing methods for plasma crystal analysis are investigated using artificial and simulated calibration data, which reproduce a multiphase system consisting of fcc, hcp, and bcc crystal data. Disturbances of the artificial data including Gaussian noise, stretching, and randomly missing particles are used to investigate the methods thoroughly. A popular method, called bond order parameter, has been repeatedly criticized as a structure analysis tool and will be improved with the help of a recent development. The method is called the bcc-sensitive Minkowski structure metric. It enhances robustness and consistency, while remaining compatible with previous bond-order-based results. Also, a promising method rooted in the molecular dynamics community is tested, yielding detailed insight of bond-order-specific drawbacks. With this investigation, the state of three-dimensional plasma crystal analysis will be significantly improved.

7.
Artigo em Inglês | MEDLINE | ID: mdl-23848791

RESUMO

We describe a series of experiments on dust particles' flows in a positive column of a horizontal dc discharge operating in laboratory and microgravity conditions. The main observation is that the particle flow velocities in laboratory experiments are systematically higher than in microgravity experiments for otherwise identical discharge conditions. The paper provides an explanation for this interesting and unexpected observation. The explanation is based on a physical model, which properly takes into account main plasma-particle interaction mechanisms relevant to the described experimental study. A comparison of experimentally measured particle velocities and those calculated using the proposed model demonstrates reasonable agreement, both in laboratory and microgravity conditions, in the entire range of discharge parameters investigated.

8.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(6 Pt 2): 065401, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23367995

RESUMO

The observation of a well-developed treelike string structure supported by a gas flow in a three-dimensional dc complex plasma is presented. The dynamically stable strings, comprising 10-20 particles, were up to 5 mm long. The experiments were performed using neon gas at a pressure of 100 Pa and melamine-formaldehyde particles with a diameter of 3.43 µm. Inside the discharge glass tube a nozzle had been built in to supply the controllable gas (plasma) flux intensity distribution along the tube. The walls of the nozzle were transparent for the laser light illuminating the particles. That gave the opportunity to closely study the particle dynamics deep inside the nozzle.

9.
Phys Rev Lett ; 106(15): 155001, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21568565

RESUMO

Dedicated experiments with strongly coupled complex plasmas in external electric fields were carried out under microgravity conditions using the PK-4 dc discharge setup. The focus was put on the comparative analysis of the formation of stringlike anisotropic structures due to reciprocal (hamiltonian) and nonreciprocal (non-hamiltonian) interactions between microparticles (induced by ac and dc fields, respectively). The experiments complemented by numerical simulations demonstrate that the responses of complex plasmas in these two regimes are drastically different. It is suggested that the observed difference is a manifestation of intrinsic thermodynamic openness of driven strongly coupled systems.

10.
Phys Rev Lett ; 102(4): 045001, 2009 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-19257428

RESUMO

An attraction between negatively charged micron-sized plastic particles was observed in the bulk of a low-pressure gas-discharge plasma under microgravity conditions. This attraction had led to the formation of a boundary-free dust cluster, containing one big central particle with a radius of about 6 microm and about 30 1 microm-sized particles situated on a sphere with a radius of 190 microm and with the big particle in the center. The stability of this boundary-free dust cluster was possible due to its confinement by the plasma flux on the central dust particle.

11.
Phys Rev Lett ; 101(23): 235001, 2008 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-19113560

RESUMO

Steady-state clouds of microparticles were observed, levitating in a low-frequency glow discharge generated in an elongated vertical glass tube. A heated ring was attached to the tube wall outside, so that the particles, exhibiting a global convective motion, were confined vertically in the region above the location of the heater. It is shown that the particle vortices were induced by the convection of neutral gas, and the mechanism responsible for the gas convection was the thermal creep along the inhomogeneously heated tube walls. The phenomenon of thermal creep, which commonly occurs in rarefied gases under the presence of thermal gradients, should generally play a substantial role in experiments with complex plasmas.

12.
Phys Rev Lett ; 101(12): 125002, 2008 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-18851380

RESUMO

We report on the first three-dimensional (3D) complex plasma structure analysis for an experiment that was performed in an elongated discharge tube in the absence of striations. The low frequency discharge was established with 1 kHz alternating dc current through a cylindrical glass tube filled with neon at 30 Pa. The injected particle cloud consisted of monodisperse microparticles. A scanning laser sheet and a camera were used to determine the particle position in 3D. The observed cylindrical-shaped particle cloud showed an ordered structure with a distinct outer particle shell. The observations are in agreement with performed molecular dynamics simulations.

13.
Phys Rev E Stat Nonlin Soft Matter Phys ; 72(1 Pt 2): 016406, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16090098

RESUMO

An experimental determination of particle charge in a bulk dc discharge plasma covering a wide range of neutral gas pressures, was recently reported [S. Ratynskaia, Phys. Rev. Lett. 93, 085001 (2004)]. The charges obtained were several times smaller than the predictions of collisionless orbital motion limited theory. This discrepancy was attributed to the effect of ion-neutral collisions. In the present paper a more detailed description of this experiment is provided and additional experimental results obtained with particles of different sizes are reported. The measurements are compared with molecular dynamics simulations of particle charging for conditions similar to those of the experiment, with other available experimental data on particle charge in the bulk of gas discharges, and with a simple analytical model accounting for ion-neutral collisions. All the considered evidence indicates that ion-neutral collisions represent a very important factor, which significantly affects (reduces) the particle charge under typical discharge conditions.

14.
Phys Rev Lett ; 93(8): 085001, 2004 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-15447195

RESUMO

The charge of dust particles is determined experimentally in a bulk dc discharge plasma in the pressure range 20-100 Pa. The charge is obtained by two independent methods: one based on an analysis of the particle motion in a stable particle flow and another on an analysis of the transition of the flow to an unstable regime. Molecular-dynamics simulations of the particle charging for conditions similar to those of the experiment are also performed. The results of both experimental methods and the simulations demonstrate good agreement. The charge obtained is several times smaller than predicted by the collisionless orbital motion theory, and thus the results serve as an experimental indication that ion-neutral collisions significantly affect particle charging.

15.
Phys Rev Lett ; 89(17): 175001, 2002 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-12398676

RESUMO

Micron-sized particles are suspended or lifted up in a gas by thermophoresis. This allows the study of many processes occurring in strongly coupled complex plasmas at the kinetic level in a relatively stress-free environment. First results of this study are presented. The technique is also of interest for technological applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...