Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell ; 33(7): 2412-2430, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34009392

RESUMO

Shoot branching and complex leaf development relies on the establishment of boundaries that precedes the formation of axillary meristems (AMs) and leaflets. The tomato (Solanum lycopersicum) super determinant mutant is compromised in both processes, due to a mutation in Sde1A. Sde1A encodes a protein with a RAWUL domain, which is also present in Polycomb Group Repressive Complex 1 (PRC1) RING finger proteins and WD Repeat Domain 48 proteins. Genetic analysis revealed that Sde1A and Bmi1A cooperate, whereas Bmi1C antagonizes both activities, indicating the existence of functionally opposing PRC1 complexes that interact with Sde1A. Sde1A is expressed at early stages of boundary development in a small group of cells in the center of the leaf-axil boundary, but its activity is required for meristem formation at later stages. This suggests that Sde1A and Bmi1A promote AM formation and complex leaf development by safeguarding a pool of cells in the developing boundary zones. Genetic and protein interaction analyses showed that Sde1A and Lateral suppressor (Ls) are components of the same genetic pathway. In contrast to ls, sde1a mutants are not compromised in inflorescence branching, suggesting that Sde1A is a potential target for breeding tomato cultivars with reduced side-shoot formation during vegetative development.


Assuntos
Arabidopsis/metabolismo , Solanum lycopersicum/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Brotos de Planta/metabolismo , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo
2.
BMC Genomics ; 17(1): 855, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27809788

RESUMO

BACKGROUND: Although the pattern of lateral organ formation from apical meristems establishes species-specific plant architecture, the positional information that confers cell fate to cells as they transit to the meristem flanks where they differentiate, remains largely unknown. We have combined fluorescence-activated cell sorting and RNA-seq to characterise the cell-type-specific transcriptome at the earliest developmental time-point of lateral organ formation using DORNRÖSCHEN-LIKE::GFP to mark founder-cell populations at the periphery of the inflorescence meristem (IM) in apetala1 cauliflower double mutants, which overproliferate IMs. RESULTS: Within the lateral organ founder-cell population at the inflorescence meristem, floral primordium identity genes are upregulated and stem-cell identity markers are downregulated. Additional differentially expressed transcripts are involved in polarity generation and boundary formation, and in epigenetic and post-translational changes. However, only subtle transcriptional reprogramming within the global auxin network was observed. CONCLUSIONS: The transcriptional network of differentially expressed genes supports the hypothesis that lateral organ founder-cell specification involves the creation of polarity from the centre to the periphery of the IM and the establishment of a boundary from surrounding cells, consistent with bract initiation. However, contrary to the established paradigm that sites of auxin response maxima pre-pattern lateral organ initiation in the IM, auxin response might play a minor role in the earliest stages of lateral floral initiation.


Assuntos
Brassica/genética , Inflorescência/genética , Meristema/genética , Transcriptoma , Análise por Conglomerados , Biologia Computacional/métodos , Epigênese Genética , Expressão Gênica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Redes Reguladoras de Genes , Genes Reporter , Fenótipo , Células Vegetais/metabolismo , Processamento Pós-Transcricional do RNA
3.
Plant Signal Behav ; 10(4): e992733, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25806573

RESUMO

The diversity of angiosperm flowers depends on organ meristy and position. However, the signaling pathways that establish polarity and positional information remain largely unelucidated. Use of the founder-cell marker DORNRÖSCHEN-LIKE (DRNL) in Arabidopsis has recently highlighted the importance of the abaxial-adaxial axis for early floral development. We have extended the use of DRNL::GFP to further characterize floral organogenesis in genotypes that are altered in floral organ meristy or position, including ettin (ett-3) and blade-on-petiole (bop)1-11 bop2-4 double mutants. The creation of supernumery sepals by the splitting of sepal founder-cell populations along an ab-/adaxial axis strengthens the importance of the ab-/adaxial developmental axis in early floral meristem development. Furthermore, we confirm the dependency of the wildtype sequence of sepal initiation on bract suppression and demonstrate that supernumery stamens derive from the imprecise resolution of a ring of DRNL expression. Expression of DRNL in apetala1 (ap1-1) and ap2-8 mutants reflect the altered whorl structure and show that these homeotic genes function upstream of DRNL. Analyzing the dynamism of early floral meristem ontogeny at a fine temporal and spatial resolution in Arabidopsis can reveal mechanisms of organogenesis and is applicable to other species with differing floral body plans in a comparative evolutionary context.


Assuntos
Arabidopsis/citologia , Polaridade Celular , Flores/anatomia & histologia , Meristema/citologia , Flores/citologia , Proteínas de Fluorescência Verde/metabolismo , Inflorescência/anatomia & histologia , Microscopia Confocal , Mutação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...