Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Coll Cardiol ; 76(6): 684-699, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32762903

RESUMO

BACKGROUND: Myocardial damage due to acute ST-segment elevation myocardial infarction (STEMI) remains a significant global health problem. New approaches to limit myocardial infarct size and reduce progression to heart failure after STEMI are needed. Mechanically reducing left ventricular (LV) workload (LV unloading) before coronary reperfusion is emerging as a potential approach to reduce infarct size. OBJECTIVES: Given the central importance of mitochondria in reperfusion injury, we hypothesized that compared with immediate reperfusion (IR), LV unloading before reperfusion improves myocardial energy substrate use and preserves mitochondrial structure and function. METHODS: To explore the effect of LV unloading duration on infarct size, we analyzed data from the STEMI-Door to Unload (STEMI-DTU) trial and then tested the effect of LV unloading on ischemia and reperfusion injury, cardiac metabolism, and mitochondrial function in swine models of acute myocardial infarction. RESULTS: The duration of LV unloading before reperfusion was inversely associated with infarct size in patients with large anterior STEMI. In preclinical models, LV unloading reduced the expression of hypoxia-sensitive proteins and myocardial damage due to ischemia alone. LV unloading with a transvalvular pump (TV-P) but not with venoarterial extracorporeal membrane oxygenation (ECMO) reduced infarct size. Using unbiased and blinded metabolic profiling, TV-P improved myocardial energy substrate use and preserved mitochondrial structure including cardiolipin content after reperfusion compared with IR or ECMO. Functional testing in mitochondria isolated from the infarct zone showed an intact mitochondrial structure including cardiolipin content, preserved activity of the electron transport chain including mitochondrial complex I, and reduced oxidative stress with TV-P-supported reperfusion but not with IR or ECMO. CONCLUSIONS: These novel findings identify that transvalvular unloading limits ischemic injury before reperfusion, improves myocardial energy substrate use, and preserves mitochondrial structure and function after reperfusion.


Assuntos
Reperfusão Miocárdica/métodos , Cuidados Pré-Operatórios/métodos , Infarto do Miocárdio com Supradesnível do Segmento ST/cirurgia , Animais , Valvas Cardíacas , Ventrículos do Coração/fisiopatologia , Coração Auxiliar , Masculino , Infarto do Miocárdio com Supradesnível do Segmento ST/fisiopatologia , Suínos
2.
Bone ; 127: 146-154, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31207357

RESUMO

The genetic components of microbial species that inhabit the body are known collectively as the microbiome. Modifications to the microbiome have been implicated in disease processes throughout the body and have recently been shown to influence bone. Prior work has associated changes in the microbial taxonomy (phyla, class, species, etc.) in the gut with bone phenotypes but has provided limited information regarding mechanisms. With the goal of achieving a more mechanistic understanding of the effects of the microbiome on bone, we perform a metagenomic analysis of the gut microbiome that provides information on the functional capacity of the microbes (all microbial genes present) rather than only characterizing the microbial taxa. Male C57Bl/6 mice were subjected to disruption of the gut microbiota (ΔMicrobiome) using oral antibiotics (from 4 to 16 weeks of age) or remained untreated (n = 6-7/group). Disruption of the gut microbiome in this manner has been shown to lead to reductions in tissue mechanical properties and whole bone strength in adulthood with only minor changes in bone geometry and density. ΔMicrobiome led to modifications in the abundance of microbial genes responsible for the synthesis of the bacterial cell wall and capsule; bacterially synthesized carbohydrates; and bacterially synthesized vitamins (B and K) (p < 0.01). Follow up analysis focused on vitamin K, a factor that has previously been associated with bone health. The vitamin K content of the cecum, liver and kidneys was primarily microbe-derived forms of vitamin K (menaquinones) and was decreased by 32-66% in ∆Microbiome mice compared to untreated animals (p < 0.01). Bone mineral crystallinity determined using Raman spectroscopy was decreased in ∆Microbiome mice (p = 0.01). This study illustrates the use of metagenomic analysis to link the microbiome to bone phenotypes and provides preliminary findings implicating microbially synthesized vitamin-K as a regulator of bone matrix quality.


Assuntos
Osso e Ossos/microbiologia , Osso e Ossos/fisiologia , Metagenoma , Microbiota/genética , Animais , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Análise Espectral Raman , Vitamina K/metabolismo
3.
Bone ; 110: 128-133, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29408699

RESUMO

Advanced glycation end-products (AGEs) are a category of post translational modification associated with the degradation of the structural properties of multiple different types of tissues. Typically, AGEs are the result of a series of post-translational modification reactions between sugars and proteins through a process known as non-enzymatic glycation (NEG). Increases in the rate of NEG of bone tissue are associated with type 2 diabetes and skeletal fragility. Current methods of assessing NEG and its impact on bone fracture risk involve measurement of pentosidine or total fluorescent AGEs (fAGEs). However, pentosidine represents only a small fraction of possible fAGEs present in bone, and neither pentosidine nor total fAGE measurement accounts for non-fluorescent AGEs, which are known to form in significant amounts in skin and other collagenous tissues. Carboxymethyl-lysine (CML) is a non-fluorescent AGE that is often measured and has been shown to accumulate in tissues such as skin, heart, arteries, and intervertebral disks, but is currently not assessed in bone. Here we show the localization of CML to collagen I using mass spectrometry for the first time in human bone. We then present a new method using demineralization followed by heating and trypsin digestion to measure CML content in human bone and demonstrate that CML in bone is 40-100 times greater than pentosidine (the current most commonly used marker of AGEs in bone). We then establish the viability of CML as a measurable AGE in bone by showing that levels of CML, obtained from bone using this technique, increase with age (p<0.05) and are correlated with previously reported measures of bone toughness. Thus, CML is a viable non-fluorescent AGE target to assess AGE accumulation and fragility in bone. The method developed here to extract and measure CML from human bone could facilitate the development of a new diagnostic assay to evaluate fracture risk and potentially lead to new therapeutic approaches to address bone fragility.


Assuntos
Osso Cortical/metabolismo , Lisina/análogos & derivados , Adulto , Idoso , Idoso de 80 Anos ou mais , Arginina/análogos & derivados , Arginina/metabolismo , Osso e Ossos , Sobrevivência Celular , Colágeno/metabolismo , Feminino , Fraturas Ósseas/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Humanos , Hidroxiprolina/metabolismo , Modelos Lineares , Lisina/metabolismo , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Risco , Adulto Jovem
4.
Anal Biochem ; 525: 46-53, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28237256

RESUMO

Osteocalcin is an important extracellular matrix bone protein that contributes to the structural properties of bone through its interactions with hydroxyapatite mineral and with collagen I. This role may be affected by glycation, a labile modification the levels of which has been shown to correlate with bone fragility. Glycation starts with the spontaneous addition of a sugar onto a free amine group on a protein, forming an Amadori product, and then proceeds through several environment-dependent stages resulting in the formation of an advanced glycation end product. Here, we induce the first step of this modification on synthetic osteocalcin, and then use multiple mass spectrometry fragmentation techniques to determine the location of this modification. Collision-induced dissociation resulted in spectra dominated by neutral loss, and was unable to identify Amadori products. Electron-transfer dissociation showed that the Amadori product formed solely on osteocalcin's N-terminus. This suggests that the glycation of osteocalcin is unlikely to interfere with osteocalcin's interaction with hydroxyapatite. Instead, glycation may interfere with its interaction with collagen I or another bone protein, osteopontin. Potentially, the levels of glycated osteocalcin fragments released from bone during bone resorption could be used to assess bone quality, should the N-terminal fragments be targeted.


Assuntos
Colágeno Tipo I/metabolismo , Durapatita/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Osteocalcina/metabolismo , Osteopontina/metabolismo , Sequência de Aminoácidos , Durapatita/química , Glicosilação , Humanos , Cinética , Osteocalcina/química , Osteopontina/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
5.
Rapid Commun Mass Spectrom ; 30(19): 2109-15, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27470908

RESUMO

RATIONALE: Osteocalcin is a small, abundant bone protein that is difficult to detect using high-throughput tandem mass spectrometry (MS/MS) proteomic approaches from bone protein extracts, and is predominantly detected by non-MS immunological methods. Here, we analyze bovine osteocalcin and its post-translational modifications to determine why a protein of this size goes undetected. METHODS: Osteocalcin was purified from cow bone using well-established methods. Intact osteocalcin or trypsin-digested osteocalcin were separated using an Agilent 1200 series high-performance liquid chromatography (HPLC) system and analyzed using a ThermoScientific LTQ-Orbitrap XL after fragmentation with higher-energy collision dissociation. Data were analyzed using Mascot or Prosight Lite. RESULTS: Our results support previous findings that the cow osteocalcin has up to three carboxylations using both intact osteocalcin and digested forms. Using Mascot, we were able to detect osteocalcin peptides, but no fragments that localized the carboxylations. Full annotation using Prosight Lite of the intact (three carboxylations), N-terminal peptide (one carboxylation), and middle peptide (two carboxylations) showed complete fragmentation was present, but complete neutral loss was observed. CONCLUSIONS: Osteocalcin carboxylation, and its associated neutral losses, makes high-throughput detection of this protein challenging; however, alternative fragmentation or limited purification can overcome these challenges. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Espectrometria de Massas/métodos , Osteocalcina/química , Proteômica/métodos , Animais , Bovinos , Peptídeos/química , Processamento de Proteína Pós-Traducional
6.
Eur J Pharmacol ; 456(1-3): 123-31, 2002 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-12450578

RESUMO

SSR125329A ([(Z)-3-(4-Adamantan-2-yl-3,5-dichloro-phenyl)-allyl]-cyclohexyl-ethyl-amine) is a new ligand exhibiting high affinity for sigma(1) and sigma(2) receptors and for the human Delta8-Delta7-sterol isomerase. Here we show that this molecule has potent immunoregulatory properties both in vitro and in vivo. SSR125329A inhibited staphylococcal enterotoxin B-induced mouse splenocyte proliferation in vitro, whereas in vivo it enhanced lipopolysaccharide-induced systemic release of interleukin-10 while simultaneously inhibiting tumor necrosis factor-alpha (TNF-alpha) synthesis. It also prevented graft-versus-host disease in B6D2F1 mice and protected Mrl/lpr mice against the development of its spontaneous rheumatoid-like syndrome. There is high interplay of pro- and anti-inflammatory cytokines in inflammatory processes, particularly in human rheumatoid arthritis. The results of this study provide substantial evidence that sigma receptor ligands may represent a new effective approach for rheumatoid arthritis treatment.


Assuntos
Adamantano/farmacologia , Anti-Inflamatórios/farmacologia , Receptores sigma/metabolismo , Adamantano/análogos & derivados , Animais , Artrite Reumatoide/patologia , Artrite Reumatoide/prevenção & controle , Ligação Competitiva , Divisão Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Enterotoxinas/farmacologia , Feminino , Doença Enxerto-Hospedeiro/prevenção & controle , Interleucina-10/metabolismo , Ligantes , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Subunidades Proteicas/metabolismo , Receptores sigma/efeitos dos fármacos , Baço/citologia , Baço/efeitos dos fármacos , Esteroide Isomerases/metabolismo , Síndrome , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...