Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 1(39): 5256-5263, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32263328

RESUMO

Contrast-enhanced magnetic resonance imaging (MRI) allows rapid non-invasive diagnosis of central nervous system (CNS) pathologies such as multiple sclerosis (MS). Current gadolinium-based contrast agents must be administered at high doses, are excreted by the kidney, and some formulations are associated with toxicity in patients with renal insufficiency. The development of nanoparticle carriers for targeted delivery of gadolinium to sites of disease would increase specificity, as well as decrease the dose of gadolinium required to obtain sufficient contrast for disease diagnosis. The plant virus, cowpea mosaic virus (CPMV), is a biocompatible nanoparticle platform for imaging applications. Gadolinium is rapidly incorporated into the interior of the CPMV capsid without disrupting particle integrity, and CPMV-Gd particles have relaxivity comparable to gadolinium chelates used clinically. Here we examine the ability of gadolinium-loaded CPMV particles (CPMV-Gd) to localize to lesions in the CNS in an animal model of MS, experimental autoimmune encephalomyelitis (EAE). The in vivo distribution of gadolinium-loaded CPMV (CPMV-Gd) was examined within the periphery and central nervous system (CNS). CPMV accumulated in inflammatory lesions within the brain and spinal cord, and specifically associated with CD11b+ and CD11c+ cells. These results demonstrate that CPMV is an attractive nanoparticle chelate for gadolinium for in vivo applications and may have clinical utility as a contrast agent for the detection of autoimmune demyelinating diseases of the CNS.

2.
Virology ; 343(2): 224-35, 2005 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-16185741

RESUMO

The plant virus, cowpea mosaic virus (CPMV), is increasingly being used as a nanoparticle platform for multivalent display of peptides. A growing variety of applications have employed the CPMV display technology including vaccines, antiviral therapeutics, nanoblock chemistry, and materials science. CPMV chimeras can be inexpensively produced from experimentally infected cowpea plants and are completely stable at 37 degrees C and low pH, suggesting that they could be used as edible or mucosally-delivered vaccines or therapeutics. However, the fate of CPMV particles in vivo, or following delivery via the oral route, is unknown. To address this question, we examined CPMV in vitro and in vivo. CPMV was shown to be stable under simulated gastric conditions in vitro. The pattern of localization of CPMV particles to mouse tissues following oral or intravenous dosing was then determined. For several days following oral or intravenous inoculation, CPMV was found in a wide variety of tissues throughout the body, including the spleen, kidney, liver, lung, stomach, small intestine, lymph nodes, brain, and bone marrow. CPMV particles were detected after cardiac perfusion, suggesting that the particles entered the tissues. This pattern was confirmed using methods to specifically detect the viral capsid proteins and the internal viral RNA. The stability of CPMV virions in the gastrointestinal tract followed by their systemic dissemination supports their use as orally bioavailable nanoparticles.


Assuntos
Comovirus/ultraestrutura , Nanoestruturas/ultraestrutura , Administração Oral , Animais , Ácidos Carboxílicos , Comovirus/patogenicidade , Fabaceae/virologia , Feminino , Corantes Fluorescentes , Suco Gástrico/virologia , Técnicas In Vitro , Cinética , Camundongos , Camundongos Endogâmicos C57BL , Nanotecnologia , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...