Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36771652

RESUMO

Against the background of climate change, we studied the effects of a severe summer drought on buds of European beech (Fagus sylvatica L.) saplings and on leaves formed during the subsequent spring in trees attributed to different drought-damage classes. For the first time, we combined assessments of the vitality (assessed through histochemical staining), mass and stable carbon isotope ratios (δ13C) of buds from drought-stressed woody plants with morphological and physiological variables of leaves that have emerged from the same plants and crown parts. The number, individual mass and vitality of the buds decreased and δ13C increased with increasing drought-induced damage. Bud mass, vitality and δ13C were significantly intercorrelated. The δ13C of the buds was imprinted on the leaves formed in the subsequent spring, but individual leaf mass, leaf size and specific leaf area were not significantly different among damage classes. Vitality and δ13C of the buds are suitable indicators of the extent of preceding drought impact. Bud vitality may be used as a simple means of screening saplings for the flushing capability in the subsequent spring. European beech saplings are susceptible, but-due to interindividual differences-are resilient, to a certain extent, to a singular severe drought stress.

2.
Tree Physiol ; 41(1): 50-62, 2021 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-32879961

RESUMO

The carbon and oxygen isotopic composition of water and assimilates in plants reveals valuable information on plant responses to climatic conditions. Yet, the carbon and oxygen uptake, incorporation and allocation processes determining isotopic compositions are not fully understood. We carried out a dual-isotope labeling experiment at high humidity with 18O-enriched water (H218O) and 13C-enriched CO2 (13CO2) with attached Scots pine (Pinus sylvestris L.) branches and detached twigs of hemiparasitic mistletoes (Viscum album ssp. austriacum) in a naturally dry coniferous forest, where also a long-term irrigation takes place. After 4 h of label exposure, we sampled previous- and recent-year leaves, twig phloem and twig xylem over 192 h for the analysis of isotope ratios in water and assimilates. For both species, the uptake into leaf water and the incorporation of the 18O-label into leaf assimilates was not influenced by soil moisture, while the 13C-label incorporation into assimilates was significantly higher under irrigation compared with control dry conditions. Species-specific differences in leaf morphology or needle age did not affect 18O-label uptake into leaf water, but the incorporation of both tracers into assimilates was two times lower in mistletoe than in pine. The 18O-label allocation in water from pine needles to twig tissues was two times higher for phloem than for xylem under both soil moisture conditions. In contrast, the allocation of both tracers in pine assimilates were similar and not affected by soil moisture, twig tissue or needle age. Soil moisture effects on 13C-label but not on 18O-label incorporation into assimilates can be explained by the stomatal responses at high humidity, non-stomatal pathways for water and isotope exchange reactions. Our results suggest that non-photosynthetic 18O-incorporation processes may have masked prevalent photosynthetic processes. Thus, isotopic variation in leaf water could also be imprinted on assimilates when photosynthetic assimilation rates are low.


Assuntos
Carbono , Traqueófitas , Isótopos de Carbono/análise , Florestas , Isótopos de Oxigênio/análise , Folhas de Planta/química , Solo , Água
3.
Proc Natl Acad Sci U S A ; 117(40): 24885-24892, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32958662

RESUMO

Drought alters carbon (C) allocation within trees, thereby impairing tree growth. Recovery of root and leaf functioning and prioritized C supply to sink tissues after drought may compensate for drought-induced reduction of assimilation and growth. It remains unclear if C allocation to sink tissues during and following drought is controlled by altered sink metabolic activities or by the availability of new assimilates. Understanding such mechanisms is required to predict forests' resilience to a changing climate. We investigated the impact of drought and drought release on C allocation in a 100-y-old Scots pine forest. We applied 13CO2 pulse labeling to naturally dry control and long-term irrigated trees and tracked the fate of the label in above- and belowground C pools and fluxes. Allocation of new assimilates belowground was ca. 53% lower under nonirrigated conditions. A short rainfall event, which led to a temporary increase in the soil water content (SWC) in the topsoil, strongly increased the amounts of C transported belowground in the nonirrigated plots to values comparable to those in the irrigated plots. This switch in allocation patterns was congruent with a tipping point at around 15% SWC in the response of the respiratory activity of soil microbes. These results indicate that the metabolic sink activity in the rhizosphere and its modulation by soil moisture can drive C allocation within adult trees and ecosystems. Even a subtle increase in soil moisture can lead to a rapid recovery of belowground functions that in turn affects the direction of C transport in trees.


Assuntos
Carbono/metabolismo , Pinus sylvestris/metabolismo , Solo/química , Árvores/metabolismo , Carbono/análise , Mudança Climática , Secas , Ecossistema , Florestas , Pinus sylvestris/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Rizosfera , Árvores/crescimento & desenvolvimento , Água/análise , Água/metabolismo
4.
New Phytol ; 222(4): 1803-1815, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30740705

RESUMO

While photosynthetic isotope discrimination is well understood, the postphotosynthetic and transport-related fractionation mechanisms that influence phloem and subsequently tree ring δ13 C are less investigated and may vary among species. We studied the seasonal and diel courses of leaf-to-phloem δ13 C differences of water-soluble organic matter (WSOM) in vertical crown gradients and followed the assimilate transport via the branches to the trunk phloem at breast height in European beech (Fagus sylvatica) and Douglas fir (Pseudotsuga menziesii). δ13 C of individual sugars and cyclitols from a subsample was determined by compound-specific isotope analysis. In beech, leaf-to-phloem δ13 C differences in WSOM increased with height and were partly caused by biochemical isotope fractionation between leaf compounds. 13 C-Enrichment of phloem sugars relative to leaf sucrose implies an additional isotope fractionation mechanism related to leaf assimilate export. In Douglas fir, leaf-to-phloem δ13 C differences were much smaller and isotopically invariant pinitol strongly influenced leaf and phloem WSOM. Trunk phloem WSOM at breast height reflected canopy-integrated δ13 C in beech but not in Douglas fir. Our results demonstrate that leaf-to-phloem isotope fractionation and δ13 C mixing patterns along vertical gradients can differ between tree species. These effects have to be considered for functional interpretations of trunk phloem and tree ring δ13 C.


Assuntos
Isótopos de Carbono/metabolismo , Fagus/metabolismo , Floema/metabolismo , Folhas de Planta/metabolismo , Pseudotsuga/metabolismo , Fracionamento Químico , Ritmo Circadiano , Ciclitóis/metabolismo , Compostos Orgânicos/análise , Estações do Ano , Solubilidade , Açúcares/metabolismo , Fatores de Tempo
5.
Tree Physiol ; 38(12): 1855-1870, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30265369

RESUMO

Among the environmental factors that have an effect on the isotopic signature of tree rings, the specific impact of soil moisture on the Δ13C and, in particular, the δ18O ratios has scarcely been investigated. We studied the effects of soil type and soil moisture (from moderately moist [Cambisol] to wet [Gleysol]) on the growth and isotopic signature of tree rings of Norway spruce (Picea abies [L.] H. Karst.), a widely distributed forest tree species in Central Europe, at a small spatial scale in a typical mature forest plantation in the low mountain ranges of Western Germany. The δ18O ratios were lower in rings of trees growing at the wettest microsite (Gleysol) than in tree rings from the microsite with moderately moist soil (Cambisol). This indicates higher uptake rates of 18O-unenriched soil water at the Gleysol microsite and corresponds to less negative soil water potentials and higher transpiration rates on the Gleysol plots. Contrary to our expectations, the basal area increments, the Δ13C ratios and the intrinsic water-use efficiency (calculated on the basis of δ13C) did not differ significantly between the Cambisol and the Gleysol microsites. For average values of each microsite and year investigated, we found a significantly positive correlation between δ13C and δ18O, which indicates a consistent stomatal control over gas exchange along the soil moisture gradient at comparable relative air humidity in the stand. As δ18O ratios of tree rings integrate responses of wood formation to soil moisture over longer periods of time, they may help to identify microsites differing in soil water availability along small-scale gradients of soil moisture under homogeneous climatic conditions and to explain the occurrence of particular tree species along those gradients in forest stands.


Assuntos
Água Subterrânea , Picea/crescimento & desenvolvimento , Solo , Árvores/crescimento & desenvolvimento , Isótopos de Carbono , Picea/química , Caules de Planta/crescimento & desenvolvimento , Suíça , Árvores/química , Madeira/química , Madeira/crescimento & desenvolvimento
6.
Plant Cell Environ ; 40(7): 1086-1103, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28042668

RESUMO

Distinguishing meteorological and plant-mediated drivers of leaf water isotopic enrichment is prerequisite for ecological interpretations of stable hydrogen and oxygen isotopes in plant tissue. We measured input and leaf water δ2 H and δ18 O as well as micrometeorological and leaf morpho-physiological variables along a vertical gradient in a mature angiosperm (European beech) and gymnosperm (Douglas fir) tree. We used these variables and different enrichment models to quantify the influence of Péclet and non-steady state effects and of the biophysical drivers on leaf water enrichment. The two-pool model accurately described the diurnal variation of leaf water enrichment. The estimated unenriched water fraction was linked to leaf dry matter content across the canopy heights. Non-steady state effects and reduced stomatal conductance caused a higher enrichment of Douglas fir compared to beech leaf water. A dynamic effect analyses revealed that the light-induced vertical gradients of stomatal conductance and leaf temperature outbalanced each other in their effects on evaporative enrichment. We conclude that neither vertical canopy gradients nor the Péclet effect is important for estimates and interpretation of isotopic leaf water enrichment in hypostomatous trees. Contrarily, species-specific non-steady state effects and leaf temperatures as well as the water vapour isotope composition need careful consideration.


Assuntos
Fagus/fisiologia , Folhas de Planta/fisiologia , Pseudotsuga/fisiologia , Deutério/metabolismo , Alemanha , Microclima , Modelos Biológicos , Isótopos de Oxigênio/metabolismo , Árvores , Água/metabolismo , Xilema/metabolismo
7.
Tree Physiol ; 32(3): 294-302, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22427372

RESUMO

Using an infrared camera, we measured the leaf temperature across different canopy positions of a 23-m-tall deciduous forest tree (Fagus sylvatica L.) including typical sun and shade leaves as well as intermediate leaf forms, which differed significantly in specific leaf area (SLA). We calculated a temperature index (I(G)) and a crop water stress index (CWSI) using the surface temperatures of wet and dry reference leaves. Additional indices were computed using air temperature plus 5 °C (I(G) + 5, CWSI + 5) as dry references. The minimum temperature of the wet leaf and the maximum temperature of the dry leaf proved to be most suitable as reference values. We correlated the temperature indices with leaf area-related conductance to water vapor (g(L)) using porometry at the leaf level and using xylem sap flow at the branch level. At the leaf and at the branch level, I(G) and CWSI were equally well suited as proxies of g(L), whereas the relationships of I(G) + 5 and CWSI + 5 with g(L) were only weak or even insignificant. At the leaf level, the correlations of I(G) and CWSI with g(L) were significant in all parts of the crown. The slopes of g(L) vs. I(G) and CWSI did not differ significantly among the crown parts; this indicates that they were not influenced by SLA or irradiance. At the branch level, close correlations (r > 0.8) were found between temperature indices and g(L) across the crown. These results demonstrate that satisfactory relationships between temperature indices and g(L) can be established in tall trees even in those canopy parts that are exposed to relatively low levels of irradiance and exhibit relatively low values of g(L).


Assuntos
Fagus/fisiologia , Transpiração Vegetal/fisiologia , Termografia/métodos , Desidratação , Fagus/efeitos da radiação , Alemanha , Umidade , Luz , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Transpiração Vegetal/efeitos da radiação , Temperatura , Termografia/instrumentação , Árvores/fisiologia , Árvores/efeitos da radiação , Água/fisiologia , Vento , Xilema/fisiologia , Xilema/efeitos da radiação
8.
Plant Cell Environ ; 35(7): 1245-57, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22292498

RESUMO

Combined δ(13) C and δ(18) O analyses of water-soluble leaf and twig phloem material were used to determine intrinsic water-use efficiency (iWUE) and variability of stomatal conductance at different crown positions in adult European beech (Fagus sylvatica) and Douglas-fir (Pseudotsuga menziesii) trees. Simultaneous gas exchange measurements allowed evaluation of the differences in calculating iWUE from leaf or phloem water-soluble compounds, and comparison with a semi-quantitative dual isotope model to infer variability of net photosynthesis (A(n) ) between the investigated crown positions. Estimates of iWUE from δ(13) C of leaf water-soluble organic matter (WSOM) outperformed the estimates from phloem compounds. In the beech crown, δ(13) C of leaf WSOM coincided clearly with gas exchange measurements. The relationship was not as reliable in the Douglas-fir. The differences in δ(18) O between leaf and phloem material were found to correlate with stomatal conductance. The semi-quantitative model approach was applicable for comparisons of daily average A(n) between different crown positions and trees. Intracanopy gradients were more pronounced in the beech than in the Douglas-fir, which reached higher values of iWUE at the respective positions, particularly under dry air conditions.


Assuntos
Modelos Biológicos , Floema/fisiologia , Folhas de Planta/fisiologia , Transpiração Vegetal , Isótopos de Carbono/análise , Fagus/fisiologia , Isótopos de Oxigênio/análise , Fotossíntese , Estômatos de Plantas/fisiologia , Pseudotsuga/fisiologia , Água/fisiologia
9.
Oecologia ; 164(4): 1083-94, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20596729

RESUMO

We hypothesised that the decomposition rates of leaf litter will increase along a gradient of decreasing fraction of the European beech (Fagus sylvatica) and increasing tree species diversity in the generally beech-dominated Central European temperate deciduous forests due to an increase in litter quality. We studied the decomposition of leaf litter including its lignin fraction in monospecific (pure beech) stands and in stands with up to five tree genera (Acer spp., Carpinus betulus, Fagus sylvatica, Fraxinus excelsior, Tilia spp.) using a litterbag approach. Litter and lignin decomposition was more rapid in stand-representative litter from multispecific stands than in litter from pure beech stands. Except for beech litter, the decomposition rates of species-specific tree litter did not differ significantly among the stand types, but were most rapid in Fraxinus excelsior and slowest in beech in an interspecific comparison. Pairwise comparisons of the decomposition of beech litter with litter of the other tree species (except for Acer platanoides) revealed a "home field advantage" of up to 20% (more rapid litter decomposition in stands with a high fraction of its own species than in stands with a different tree species composition). Decomposition of stand-representative litter mixtures displayed additive characteristics, not significantly more rapid than predicted by the decomposition of litter from the individual tree species. Leaf litter decomposition rates were positively correlated with the initial N and Ca concentrations of the litter, and negatively with the initial C:N, C:P and lignin:N ratios. The results support our hypothesis that the overall decomposition rates are mainly influenced by the chemical composition of the individual litter species. Thus, the fraction of individual tree species in the species composition seems to be more important for the litter decomposition rates than tree species diversity itself.


Assuntos
Ecossistema , Fagus/metabolismo , Folhas de Planta/metabolismo , Árvores/fisiologia , Carbono/metabolismo , Europa (Continente) , Nitrogênio/metabolismo , Fósforo/metabolismo , Folhas de Planta/química , Especificidade da Espécie , Fatores de Tempo , Árvores/classificação
10.
Tree Physiol ; 28(3): 343-53, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18171658

RESUMO

Quercus robur (L.) and Q. petraea (Matt.) Liebl. are European oak species that often grow in forest soils with high soluble manganese (Mn2+) concentrations. We tested the effects of Mn2+ at concentrations of 0.0024 mM (control), 0.24 mM (typical of acidic forest soils) and 1.2 mM (typical of forest soils under strongly reducing conditions) on the growth, tissue anatomy, foliar element concentrations, subcellular element distribution and gas exchange of solution-cultured seedlings. At the highest Mn2+ concentration, seedlings were grown with and without an elevated concentration (1.2 mM) of magnesium (Mg2+). At 0.24 mM Mn2+, foliar Mn concentrations were higher than observed in the field. Vacuoles of the leaf epidermis and mesophyll were the main sites of manganese accumulation. High nutrient solution Mn2+ concentration significantly lowered foliar iron (Fe) and Mg concentrations. Elevated Mg2+ concentration raised the foliar Mg concentrations to control values, but Fe concentrations and gas exchange remained depressed. In seedlings grown in the 1.2 mM Mn2+ treatment without elevated Mg2+ damage to the phloem of the petioles and a reduction in root mass were observed in both species. The effects on shoot and root growth were greatest in Q. petraea. Alleviation of manganese toxicity symptoms by Mg2+ in Q. petraea was less effective than in Q. robur. Our results suggest that the soil solution Mn2+ concentrations that occur in European oak forests are unlikely to affect the distribution and performance of Q. robur and Q. petraea in the field.


Assuntos
Parede Celular/metabolismo , Magnésio/metabolismo , Manganês/metabolismo , Folhas de Planta/metabolismo , Quercus/metabolismo , Biomassa , Dióxido de Carbono/metabolismo , Ferro/metabolismo , Manganês/toxicidade , Floema/efeitos dos fármacos , Folhas de Planta/anatomia & histologia , Transpiração Vegetal/efeitos dos fármacos , Quercus/anatomia & histologia , Quercus/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...