Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(7): 8239-8246, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38405497

RESUMO

Chemical tracers are indispensable tools for enhancing reservoir characterization and optimizing production processes in the oil and gas industry. Particularly, interwell water tracers provide key data for efficient water flood management and the improvement of production rates. However, the analysis of these water tracers within reservoir fluids is challenging, requiring laborious separation and extraction steps that often rely on complex instruments and skilled operators. Real-time analysis is especially problematic in remote areas with limited access to well-equipped laboratories. To address these challenges, we introduce a paper-based platform for the time-resolved fluorescence detection of dipicolinic acid (DPA) tracers complexed with terbium ion (Tb3+). Our innovation is driven by the need to simplify tracer analysis, make it portable, and enhance accessibility for oilfield applications. By leveraging the unique properties of cyclen-based macrocyclic ligands, we have achieved the stable and sensitive immobilization of Tb3+ on quartz microfilter paper, eliminating the need for extensive laboratory-based procedures. We achieve the stable and sensitive immobilization of Tb3+ on quartz microfilter paper by leveraging the unique properties of cyclen-based macrocyclic ligands. This innovation enables the formation of highly fluorescent, oil-blind, and optically detectable DPA-Tb3+ complexes at the paper surface. We visualize and capture these fluorescence signals using an intensified charge-coupled device camera via time gating, effectively suppressing undesirable fluorescence originating from crude oil. The quantification of DPA concentrations is achievable down to 158 ppb (9.45 × 10-7 M), as confirmed through time-resolved fluorescence microplate reader measurements. We also demonstrate the practicality of our technology by detecting DPA tracers in the presence of crude oil contamination, a common challenge encountered in oil production wells.

2.
Biomed Opt Express ; 6(7): 2325-36, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26203364

RESUMO

Optical tweezers play an important role in biological applications. However, it is difficult for traditional optical tweezers based on objective lenses to work in a three-dimensional (3D) solid far away from the substrate. In this work, we develop a fiber based optical trapping system, namely inclined dual fiber optical tweezers, that can simultaneously apply and measure forces both in water and in a 3D polyacrylamide gel matrix. In addition, we demonstrate in situ, non-invasive characterization of local mechanical properties of polyacrylamide gel by measurements on an embedded bead. The fiber optical tweezers measurements agree well with those of atomic force microscopy (AFM). The inclined dual fiber optical tweezers provide a promising and versatile tool for cell mechanics study in 3D environments.

3.
J Biomed Mater Res B Appl Biomater ; 103(4): 861-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25142015

RESUMO

The immediate physical and chemical surroundings of cells provide important biochemical cues for their behavior. Designing and tailoring biomaterials for controlled cell signaling and extracellular matrix (ECM) can be difficult due to the complexity of the cell-surface relationship. To address this issue, our research has led to the development of a polydimethylsiloxane (PDMS) scaffold with defined microtopography and chemistry for surface driven ECM assembly. When human fibroblasts were cultured on this microtextured PDMS with 2-6 µm wide vertical features, significant changes in morphology, adhesion, actin cytoskeleton, and fibronectin generation were noted when compared with cells cultured on unmodified PDMS. Investigation of cellular response and behavior was performed with atomic force microscopy in conjunction with fluorescent labeling of focal adhesion cites and fibronectin in the ECM. Changes in the surface topography induced lower adhesion, an altered actin cytoskeleton, and compacted units of fibronectin similar to that observed in vivo. Overall, these findings provide critical information of cell-surface interactions with a microtextured, polymer substrate that can be used in the field of tissue engineering for controlling cellular ECM interactions.


Assuntos
Dimetilpolisiloxanos/química , Matriz Extracelular/química , Fibroblastos/metabolismo , Alicerces Teciduais/química , Adesão Celular , Células Cultivadas , Citoesqueleto/metabolismo , Fibroblastos/ultraestrutura , Humanos , Microscopia de Força Atômica , Propriedades de Superfície , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...