Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Biodivers ; 20(12): e202300957, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37888938

RESUMO

As COVID-19 infection caused severe public health concerns recently, the development of novel antivirals has become the need of the hour. Main protease (Mpro ) has been an attractive target for antiviral drugs since it plays a vital role in polyprotein processing and virus maturation. Herein we report the discovery of a novel class of inhibitors against the SARS-CoV-2, bearing histidine α-nitrile motif embedded on a simple dipeptide framework. In-vitro and in-silico studies revealed that the histidine α-nitrile motif envisioned to target the Mpro contributes to the inhibitory activity. Among a series of dipeptides synthesized featuring this novel structural motif, some dipeptides displayed strong viral reduction (EC50 =0.48 µM) with a high selectivity index, SI>454.54. These compounds also exhibit strong binding energies in the range of -28.7 to -34.2 Kcal/mol. The simple dipeptide structural framework, amenable to quick structural variations, coupled with ease of synthesis from readily available commercial starting materials are the major attractive features of this novel class of SARS-CoV-2 inhibitors. The histidine α-nitrile dipeptides raise the hope of discovering potent drug candidates based on this motif to fight the dreaded SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Histidina , Inibidores de Proteases/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Dipeptídeos/farmacologia , Antivirais/farmacologia , Antivirais/química
2.
Sci Rep ; 12(1): 13146, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35908093

RESUMO

The main protease (Mpro) of SARS-CoV-2 has been recognized as an attractive drug target because of its central role in viral replication. Our previous preliminary molecular docking studies showed that theaflavin 3-gallate (a natural bioactive molecule derived from theaflavin and found in high abundance in black tea) exhibited better docking scores than repurposed drugs (Atazanavir, Darunavir, Lopinavir). In this study, conventional and steered MD-simulations analyses revealed stronger interactions of theaflavin 3-gallate with the active site residues of Mpro than theaflavin and a standard molecule GC373 (a known inhibitor of Mpro and novel broad-spectrum anti-viral agent). Theaflavin 3-gallate inhibited Mpro protein of SARS-CoV-2 with an IC50 value of 18.48 ± 1.29 µM. Treatment of SARS-CoV-2 (Indian/a3i clade/2020 isolate) with 200 µM of theaflavin 3-gallate in vitro using Vero cells and quantifying viral transcripts demonstrated reduction of viral count by 75% (viral particles reduced from Log106.7 to Log106.1). Overall, our findings suggest that theaflavin 3-gallate effectively targets the Mpro thus limiting the replication of the SARS-CoV-2 virus in vitro.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Animais , Antivirais/química , Antivirais/farmacologia , Biflavonoides , Catequina , Chlorocebus aethiops , Proteases 3C de Coronavírus , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Peptídeo Hidrolases , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...