Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39005055

RESUMO

Lead halide perovskite nanocrystals have been extensively studied in recent years as efficient optical materials for their bright and color-tunable emissions. However, these are mostly confined to their 3D nanocrystals and limited to the anisotropic nanostructures. By exploring the Cs-sublattice-induced metal(II) ion exchange with Pb(II), crack CsPbBr3 perovskite platelet nanocrystals having polar surfaces in all three directions are reported here, which remained different than reported standard square platelets. The crack platelets are also passivated with halides to enhance their brightness. Further, as these crack and passivated crack platelets have defects and polar surfaces, the exciton and biexciton generation in these platelets is investigated using femtosecond photoluminescence and transient absorption measurement at ambient as well as cryogenic temperatures, correlated with time-resolved single-particle photoluminescence spectroscopy, and compared with standard square platelets having nonpolar facets. These investigations revealed that the crack platelets and passivated crack platelets possess enhanced biexciton emission compared to square platelets due to the presence of polar surfaces in all three directions. These results provide insights into not only the design of the anisotropic nanostructures of ionic nanocrystals but also the possibility of tuning the single exciton to biexciton generation efficiency, which has potential applications in optoelectronic systems.

2.
J Phys Chem Lett ; 15(2): 507-513, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38190655

RESUMO

Understanding the mechanism of chirality transfer from a chiral surface to an achiral molecule is essential for designing molecular systems with tunable chiroptical properties. These aspects are explored herein using l- and d-isomers of alkyl valine amphiphiles, which self-assemble in water as nanofibers possessing a negative surface charge. An achiral chromophore, acridine orange, upon electrostatic binding on these surfaces displays mirror-imaged bisignated circular dichroism and red-emitting circularly polarized luminescence signals with a high dissymmetry factor. Experimental and computational investigations establish that the chiroptical properties emerge from surface-bound asymmetric H-type dimers of acridine orange, further supported by fluorescence lifetime imaging studies. Specifically, atomistic molecular dynamics simulations show that the experimentally observed chiral signatures have their origin in van der Waals interactions between acridine orange dimers and the amphiphile head groups as well as in the extent of solvent exposure of the chromophore.

3.
J Chem Phys ; 160(4)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38294316

RESUMO

Indium phosphide (InP) quantum dots (QDs) have recently garnered considerable interest in the design of bioprobes due to their non-toxic nature and excellent optical properties. Several attempts for the conjunction of InP QDs with various entities such as organic dyes and dye-labeled proteins have been reported, while that with fluorescent proteins remains largely uncharted. This study reports the development of a Förster resonance energy transfer pair comprising glutathione-capped InP/GaP/ZnS QDs [InP(G)] and the fluorescent protein mCherry. Glutathione on InP(G) undergoes effective bioconjugation with mCherry consisting of a hexahistidine tag, and the nonradiative energy transfer is investigated using steady-state and time-resolved measurements. Selective one-photon excitation of InP(G) in the presence of mCherry shows a decay of the emission of the QDs and a concomitant growth of acceptor emission. Time-resolved investigations prove the nonradiative transfer of energy between InP(G) and mCherry. Furthermore, the scope of two-photon-induced energy transfer between InP(G) and mCherry is investigated by exciting the donor in the optical transparency range. The two-photon absorption is confirmed by the quadratic relationship between the emission intensity and the excitation power. In general, near-infrared excitation provides a path for effective light penetration into the tissues and reduces the photodamage of the sample. The two-photon-induced energy transfer in such assemblies could set the stage for a wide range of biological and optoelectronic applications in the foreseeable future.


Assuntos
Corantes , Transferência Ressonante de Energia de Fluorescência , Índio , Fosfinas , Glutationa , Fótons
4.
J Am Chem Soc ; 145(25): 13989-13999, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37317943

RESUMO

The design of cube-connected nanorods is accomplished by connecting seed nanocrystals of a defined shape in a particular orientation or by etching selective facets of preformed nanorods. In lead halide perovskite nanostructures, which retain mostly a hexahedron cube shape, such patterned nanorods can be designed with the anisotropic direction along the edge, vertex, or facet of seed cubes. Combining the Cs-sublattice platform for transforming metal halides to halide perovskites with facet-specific ligand binding chemistry, herein, vertex-oriented patterning of nanocubes in one-dimensional (1D) rod structures is reported. By tuning the length of host metal halides, their lengths could also be tuned from 100 nm to nearly 1000 nm. The symmetry of the hexagonal phase of host halide CsCdBr3 and product orthorhombic CsPbBr3 helped in maintaining the vertex [201] as the anisotropic direction. Neutral exciton recombination rates, extracted from photoluminescence blinking traces, showed a systematic increase from isolated cubes to cube-connected nanorods of various lengths. Efficient coupling of wave functions in vertex-oriented cube assemblies permits exciton delocalization. Our findings on carrier delocalization in cube-connected nanorods along their vertex direction having minimum interfacial contacts provide valuable insights into the fundamental chemistry of assembling anisotropic halide perovskite nanostructures as conducting wires.

5.
J Chem Phys ; 158(17)2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37129142

RESUMO

The optical properties of non-toxic indium phosphide (InP) quantum dots (QDs) are impinged by the existence of characteristic deep trap states. Several surface engineering strategies have been adopted to improve their optical quality, which has promoted the use of InP QDs for various technological applications. An antithetical approach involves the effective utilization of the deep trap states in InP QDs to modulate back electron transfer rates. Here, we explore the influence of the core-size of InP on their In-to-P stoichiometry and charge transfer dynamics when bound to an acceptor molecule, decyl viologen (DV2+). The mechanism of interaction of InP and DV2+ based on the quenching sphere model established the presence of (i) a 1:1 complex of DV2+ bound on InP and (ii) immobile quenchers in the quenching sphere, depending on the concentration of DV2+. While the forward electron transfer rates from photoexcited InP to bound DV2+ does not substantially vary with an increase in core size, the back electron transfer rates are found to be retarded. Findings from inductively coupled plasma-optical emission spectroscopy (ICP-OES) and X-ray photoelectron spectroscopy (XPS) reveal that the In to P ratio is higher for QDs with larger core size, which further brings about increased carrier trapping and a decreased rate of charge recombination. Furthermore, long-lived charge-separated states in DV2+ bound to InP, extending to hundreds of milliseconds, are obtained by varying the number of DV2+ in the quenching sphere of the QDs.

6.
ACS Nano ; 17(11): 11054-11069, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37220308

RESUMO

The surface domains of self-assembled amphiphiles are well-organized and can perform many physical, chemical, and biological functions. Here, we present the significance of chiral surface domains of these self-assemblies in transferring chirality to achiral chromophores. These aspects are probed using l- and d-isomers of alkyl alanine amphiphiles which self-assemble in water as nanofibers, possessing a negative surface charge. When bound on these nanofibers, positively charged cyanine dyes (CY524 and CY600), each having two quinoline rings bridged by conjugated double bonds, show contrasting chiroptical features. Interestingly, CY600 displays a bisignated circular dichroic (CD) signal with mirror-image symmetry, while CY524 is CD silent. Molecular dynamics simulations reveal that the model cylindrical micelles (CM) derived from the two isomers exhibit surface chirality and the chromophores are buried as monomers in mirror-imaged pockets on their surfaces. The monomeric nature of template-bound chromophores and their binding reversibility are established by concentration- and temperature-dependent spectroscopies and calorimetry. On the CM, CY524 displays two equally populated conformers with opposite sense, whereas CY600 is present as two pairs of twisted conformers in each of which one is in excess, due to differences in weak dye-amphiphile hydrogen bonding interactions. Infrared and NMR spectroscopies support these findings. Reduction of electronic conjugation caused by the twist establishes the two quinoline rings as independent entities. On-resonance coupling between the transition dipoles of these units generates bisignated CD signals with mirror-image symmetry. The results presented herein provide insight on the little-known structurally induced chirality of achiral chromophores through transfer of chiral surface information.

7.
Chem Sci ; 14(8): 1986-1996, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36845926

RESUMO

The phenomenon of excited-state symmetry breaking is often observed in multipolar molecular systems, significantly affecting their photophysical and charge separation behavior. As a result of this phenomenon, the electronic excitation is partially localized in one of the molecular branches. However, the intrinsic structural and electronic factors that regulate excited-state symmetry breaking in multibranched systems have hardly been investigated. Herein, we explore these aspects by adopting a joint experimental and theoretical investigation for a class of phenyleneethynylenes, one of the most widely used molecular building blocks for optoelectronic applications. The large Stokes shifts observed for highly symmetric phenyleneethynylenes are explained by the presence of low-lying dark states, as also established by two-photon absorption measurements and TDDFT calculations. In spite of the presence of low-lying dark states, these systems show an intense fluorescence in striking contrast to Kasha's rule. This intriguing behavior is explained in terms of a novel phenomenon, dubbed "symmetry swapping" that describes the inversion of the energy order of excited states, i.e., the swapping of excited states occurring as a consequence of symmetry breaking. Thus, symmetry swapping explains quite naturally the observation of an intense fluorescence emission in molecular systems whose lowest vertical excited state is a dark state. In short, symmetry swapping is observed in highly symmetric molecules having multiple degenerate or quasi-degenerate excited states that are prone to symmetry breaking.

8.
Phys Chem Chem Phys ; 24(28): 17250-17262, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35796601

RESUMO

The brightness of an emitter can be enhanced by metal-enhanced fluorescence, wherein the excitonic dipole couples with the electromagnetic field of the surface plasmon. Herein, we experimentally map the landscape of photoluminescence enhancement (EFexp) of emitters in a plasmonic field as a function of the emitter-emitter separation, s, and the emitter-plasmon distance, t. We use Au nanoparticles overcoated with inert spacers as plasmonic systems and CdSe/ZnS quantum dots (QDs) as an emitter bearing opposite surface charges. The t and s are varied by changing the spacer thickness and number density of QDs on the plasmonic surface, respectively. The electrostatic binding of emitters on the plasmonic surface and their number density are established by following the variation of zeta-potential. EFexp is high, when t is short and s is large; nevertheless, it decreases when the emitter-emitter interaction dominates due to plasmon assisted nonradiative processes. In the absence of a plasmonic field, the enhancement observed is attributed to environmental effects and is independent of s, confirming the role of the electric field. Indeed, the distance dependence of EFexp closely follows the decay of the plasmonic field upon dilution of the emitter concentration on nanoparticles' surface (s = 18 nm). The QD-plasmon system is visualized in the framework of the Thomson problem, and classical electrodynamics calculations give the trends in t and s dependence of the photoluminescence. Being the first report on the simultaneous dependence of t and s on plasmon-enhanced photoluminescence, the results presented herein will open newer opportunities in the design of hybrid systems with a high brightness.

9.
J Phys Chem B ; 126(14): 2635-2646, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35353512

RESUMO

The use of indium phosphide (InP) quantum dots (QDs) as biological fluorophores is limited by the low photoluminescence quantum yield (ϕPL) and the lack of effective bioconjugation strategies. The former issue has been addressed by introducing a strain relaxing intermediate shell such as ZnSe, GaP etc. that significantly enhances the ϕPL of InP. Herein, we present an effective strategy for the conjugation of emissive InP/GaP/ZnS QDs with a commonly used globular protein, namely bovine serum albumin (BSA), which generate colloidally stable QD bioconjugates, labeled as InP-BSA and demonstrate its use as energy transfer probes. The conjugate contains one protein per QD, and the circular dichroism spectra of BSA and InP-BSA exhibit similar fractions of α-helix and ß-sheet, reflective of the fact that the secondary structure of the protein is intact on binding. More importantly, the fluorescence polarization studies corroborate the fact that the bound protein can hold a variety of chromophoric acceptors. Upon selectively exciting the InP-BSA component in the presence of bound chromophores, a reduction in the emission intensity of the donor is observed with a concomitant increase in emission of the acceptor. Time-resolved investigations further confirm an efficient nonradiative energy transfer from InP-BSA to the bound acceptors.


Assuntos
Pontos Quânticos , Compostos de Zinco , Transferência de Energia , Índio , Fosfinas , Pontos Quânticos/química , Pontos Quânticos/metabolismo , Soroalbumina Bovina/química , Sulfetos/química , Compostos de Zinco/química
10.
J Am Chem Soc ; 144(11): 5074-5086, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35258297

RESUMO

Silicon-based light-emitting materials have emerged as a favorable substitute to various organic and inorganic systems due to silicon's high natural abundance, low toxicity, and excellent biocompatibility. However, efforts on the design of free-standing silicon nanoparticles with chiral non-racemic absorption and emission attributes are rather scare. Herein, we unravel the structural requirements for ligand-induced chirality in silicon-based nanomaterials by functionalizing with D- and L-isomers of a bifunctional ligand, namely, tryptophan. The structural aspects of these systems are established using high-resolution high-angle annular dark-field imaging in the scanning transmission electron microscopy mode, solid-state nuclear magnetic resonance, Fourier transform infrared, and X-ray photoelectron spectroscopy. Silicon nanoparticles capped with L- and D-isomers of tryptophan displayed positive and negative monosignated circular dichroic signals and circularly polarized luminescence indicating their ground- and excited-state chirality. Various studies supported by density functional theory calculations signify that the functionalization of indole ring nitrogen on the silicon surface plays a decisive role in modifying the chiroptical characteristics by generating emissive charge-transfer states. The chiroptical responses originate from the multipoint interactions of tryptophan with the nanoparticle surface through the indole nitrogen and -CO2- groups that can transmit an enantiomeric structural imprint on the silicon surface. However, chiroptical properties are not observed in phenylalanine- and alanine-capped silicon nanoparticles, which are devoid of Si-N bonds and chiral footprints. Thus, the ground- and excited-state chiroptics in tryptophan-capped silicon nanoparticles originates from the collective effect of ligand-bound emissive charge-transfer states and chiral footprints. Being the first report on the circularly polarized luminescence in silicon nanoparticles, this work will open newer possibilities in the field of chirality.


Assuntos
Nanopartículas , Silício , Indóis , Ligantes , Nanopartículas/química , Nitrogênio , Silício/química , Triptofano
11.
J Phys Chem Lett ; 13(5): 1209-1214, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35089035

RESUMO

The chemical and physical properties of molecules and materials are known to be modified significantly under vibrational strong coupling (VSC). To gain insight into the effects of VSC on π-π interactions involved in molecular self-assembly, themselves sensitive to vacuum electromagnetic field fluctuations, the aggregation of two structural isomers (linear and V-shaped) of phenyleneethynylene under cooperative coupling was investigated. By coupling the aromatic C═C stretching band, the assembly of one of the molecules results in the formation of spheres as opposed to flakes under normal conditions. As a consequence, the electronic absorption and emission spectra of the self-assembled structures are also modified significantly. The VSC-induced changes depend not only on the type of vibration that is coupled but also on the symmetry of the phenyleneethynylene isomer. These results confirm that VSC can be used to drive molecular assemblies to new structural minima and thereby provide a new tool for supramolecular chemistry.

12.
Chem Soc Rev ; 50(20): 11208-11226, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34522920

RESUMO

This tutorial provides a comprehensive description of the origin of chiroptical properties of supramolecular and plasmonic assemblies in the UV-visible region of the electromagnetic spectrum. The photophysical concepts essential for understanding chiroptical signatures are presented in the first section. Just as the oscillator strength (a positive quantity) is related to absorption, the rotational strength (either a positive or a negative quantity) defines the emergence of chiroptical signatures in molecular/plasmonic systems. In supramolecular systems, induced circular dichroism (ICD) originates through the off-resonance coupling of transition dipoles in chiral inclusion complexes, while exciton coupled circular dichroism (ECD) originates through the on-resonance exciton coupling of transition dipoles in chiral assemblies resulting in the formation of a bisignated CD signal. In bisignated ECD spectra, the sign of the couplet is determined not only by the handedness of chiral supramolecular assemblies, but also by the sign of the interaction energy between transition dipoles. Plasmonic chirality is briefly addressed in the last section, focusing on inherent chirality, induced chirality, and surface plasmon-coupled circular dichroism (SP-CD). The oscillator strength is of the order of 1 in molecular systems, while it becomes very large (104-105) in plasmonic systems due to the collective plasmonic excitations, resulting in intense CD signals, which can be exploited for the design of plasmonic metamaterial platforms for chiral sensing applications.

14.
J Chem Phys ; 152(4): 044710, 2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32007054

RESUMO

Semiconductor-metal heterojunction nanostructures possess an ability to store electrons upon photoexcitation through Fermi level equilibration. The unique role of capping ligands in modulating the equilibration of Fermi level in CdSe-Au heteronanostructures is explored by taking alkyl thiols and alkyl amines as examples. Alkyl thiol having its highest occupied molecular orbital (HOMO) above the valence band of the heterojunction nanostructure inhibits the exciton recombination by scavenging the photogenerated hole. This leads to the elevation in the Fermi level of Au and equilibration with the conduction band of CdSe. The Fermi level equilibrated electrons are further transferred to an acceptor molecule such as methyl viologen, demonstrating the potential of heterojunction nanostructures capped with hole accepting ligands for charge transport application in photovoltaics. In contrast, alkyl amine being a non-hole acceptor ligand with its HOMO placed below its valence band promotes rapid Au mediated exciton recombination, limiting its usefulness in charge transport application. Thus, the energetics of ligands on heterojunction nanostructures plays a decisive role in Fermi level equilibration.

15.
ACS Nano ; 14(1): 28-117, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31478375

RESUMO

The discovery of the enhancement of Raman scattering by molecules adsorbed on nanostructured metal surfaces is a landmark in the history of spectroscopic and analytical techniques. Significant experimental and theoretical effort has been directed toward understanding the surface-enhanced Raman scattering (SERS) effect and demonstrating its potential in various types of ultrasensitive sensing applications in a wide variety of fields. In the 45 years since its discovery, SERS has blossomed into a rich area of research and technology, but additional efforts are still needed before it can be routinely used analytically and in commercial products. In this Review, prominent authors from around the world joined together to summarize the state of the art in understanding and using SERS and to predict what can be expected in the near future in terms of research, applications, and technological development. This Review is dedicated to SERS pioneer and our coauthor, the late Prof. Richard Van Duyne, whom we lost during the preparation of this article.

16.
ACS Nano ; 13(4): 4392-4401, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30916934

RESUMO

Template-assisted strategies are widely used to fabricate nanostructured materials. By taking these strategies a step forward, herein we report the design of two chiral plasmonic nanostructures based on Au nanoparticle (NP) assemblies organized in clockwise and anticlockwise directions, having opposite response to circularly polarized light. The chiral plasmonic nanostructures are obtained by growing Au NPs on chiral templates based on d- and l-forms of alanine functionalized phenyleneethynylenes. Interestingly, Au NP assemblies show mirror symmetrical electronic circular dichroism (ECD) bands at their surface plasmon frequency originating through their asymmetric organization. Upon increasing the temperature, the chiral templates dissociate as evident from the disappearance of their ECD signal. The profound advantage of the thermoresponsive nature of the templates is employed to obtain free-standing chiral plasmonic nanostructures. The tilt angle high-resolution transmission electron microscopic measurements indicate that the NP assemblies, grown on a template based on the d-isomer, organize in clockwise direction ( P-form) and on l-isomer in anticlockwise direction ( M-form). The inherent chirality prevailing on the surface of the template drives the helical growth of the Au NPs in opposite directions. Experimental results are rationalized by a model which accounts for the large polarizability of Au NPs. The large polarizability leads to large oscillating dipole moments whose effects become prominent when interparticle distances are comparable to the particle size.

17.
ACS Nano ; 12(9): 9060-9069, 2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-30103604

RESUMO

Semiconductor quantum dots with stable photoluminescence are necessary for next generation optoelectronic and photovoltaic devices. Photoluminescence intensity fluctuations of cadmium and lead chalcogenide quantum dots have been extensively investigated since the first observation of blinking in CdSe nanocrystals in 1996. In a quantum dot, blinking originates from stochastic photocharging, nonradiative Auger recombination, and delayed neutralization. So far, blinking is suppressed by defect passivation, electron transfer, and shell preparation, but without any deep insight into free energy change of electron transfer. We report real-time detection of significant blinking suppression for CdSe/ZnS quantum dots exposed to N, N-dimethylaniline, which is accompanied by a considerable increase in the time-averaged photoluminescence intensity of quantum dots. Although the Gibbs (free) energy change (Δ Get = +2.24 eV), which is estimated electrochemically and from density functional theory calculations, is unfavorable for electron transfer from N, N-dimethylaniline to a quantum dot in the minimally excited (band-edge) state, electron transfer is obvious when a quantum dot is highly excited. Nonetheless, Δ Get crosses from the positive to negative scale as the solvent dielectric constant exceeds 5, favoring electron transfer from N, N-dimethylaniline to a quantum dot excited to the band-edge state. Based on single-molecule photoluminescence and ensemble electron transfer studies, we assign blinking suppression to the transfer of an electron from N, N-dimethylaniline to the hot hole state of a quantum dot. In addition to blinking suppression by electron transfer, complete removal of blinking is limited by short-living OFF states induced by the negative trion.

18.
J Phys Chem Lett ; 9(16): 4584-4590, 2018 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-30040428

RESUMO

Chiroptical properties of supramolecular assemblies originate through the asymmetric coupling of molecular transition dipole moments. Herein, we report a joint experimental and theoretical investigation to understand the influence of intermolecular interactions on chiroptical properties, particularly during the early stages of self-assembly. In this regard, phenyleneethynylene-based molecular systems appended with d- and l-isomers of phenylalanine have been synthesized with one as well as two electronic transitions in the spectral region of interest. When self-assembled, these molecules show distinctly different chiroptical properties with the right- and left-handed organizations, guided by the chirality of phenylalanines. The standard exciton approach explains the observation of a bisignated electronic circular dichroism signal in systems with a single transition but fails when applied to systems with two nearby transitions. Here, we present a generalized exciton approach that addresses the unusual chiroptical properties of systems with multiple transitions.

19.
J Phys Chem Lett ; 9(4): 919-932, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29394070

RESUMO

Recent advances in understanding the theoretical and experimental properties of excitons and plasmons have led to several technological breakthroughs. Though emerging from different schools of research, the parallels they possess both in their isolated and assembled forms are indeed interesting. Employing the larger framework of the dipolar coupling model, these aspects are discussed based on the excitonic transitions in chromophores and plasmonic resonances in noble metal nanostructures. The emergence of novel optical properties in linear, parallel, and helical assemblies of chromophores and nanostructures with varying separation distances, orientations, and interaction strengths of interacting dipolar components is discussed. The very high dipolar strengths of plasmonic transitions compared to the excitonic transitions, arising due to the collective nature of the electronic excitations in nanostructures, leads to the emergence of hot spots in plasmonically coupled assemblies. Correlations on the distance dependence of electric field with Raman signal enhancements have paved the way to the development of capillary tube-based plasmonic platforms for the detection of analytes.

20.
ACS Nano ; 12(1): 402-415, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29261287

RESUMO

Strong coupling interactions between plasmon and exciton-based excitations have been proposed to be useful in the design of optoelectronic systems. However, the role of various optical parameters dictating the plasmon-exciton (plexciton) interactions is less understood. Herein, we propose an inequality for achieving strong coupling between plasmons and excitons through appropriate variation of their oscillator strengths and spectral widths. These aspects are found to be consistent with experiments on two sets of free-standing plexcitonic systems obtained by (i) linking fluorescein isothiocyanate on Ag nanoparticles of varying sizes through silane coupling and (ii) electrostatic binding of cyanine dyes on polystyrenesulfonate-coated Au nanorods of varying aspect ratios. Being covalently linked on Ag nanoparticles, fluorescein isothiocyanate remains in monomeric state, and its high oscillator strength and narrow spectral width enable us to approach the strong coupling limit. In contrast, in the presence of polystyrenesulfonate, monomeric forms of cyanine dyes exist in equilibrium with their aggregates: Coupling is not observed for monomers and H-aggregates whose optical parameters are unfavorable. The large aggregation number, narrow spectral width, and extremely high oscillator strength of J-aggregates of cyanines permit effective delocalization of excitons along the linear assembly of chromophores, which in turn leads to efficient coupling with the plasmons. Further, the results obtained from experiments and theoretical models are jointly employed to describe the plexcitonic states, estimate the coupling strengths, and rationalize the dispersion curves. The experimental results and the theoretical analysis presented here portray a way forward to the rational design of plexcitonic systems attaining the strong coupling limits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...