Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Circulation ; 148(22): 1764-1777, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37781816

RESUMO

BACKGROUND: Clonal hematopoiesis (CH) has emerged as an independent risk factor for atherosclerotic cardiovascular disease, with activation of macrophage inflammasomes as a potential underlying mechanism. The NLRP3 (NLR family pyrin domain containing 3) inflammasome has a key role in promoting atherosclerosis in mouse models of Tet2 CH, whereas inhibition of the inflammasome product interleukin-1ß appeared to particularly benefit patients with TET2 CH in CANTOS (Cardiovascular Risk Reduction Study [Reduction in Recurrent Major CV Disease Events]). TET2 is an epigenetic modifier that decreases promoter methylation. However, the mechanisms underlying macrophage NLRP3 inflammasome activation in TET2 (Tet methylcytosine dioxygenase 2) deficiency and potential links with epigenetic modifications are poorly understood. METHODS: We used cholesterol-loaded TET2-deficient murine and embryonic stem cell-derived isogenic human macrophages to evaluate mechanisms of NLRP3 inflammasome activation in vitro and hypercholesterolemic Ldlr-/- mice modeling TET2 CH to assess the role of NLRP3 inflammasome activation in atherosclerosis. RESULTS: Tet2 deficiency in murine macrophages acted synergistically with cholesterol loading in cell culture and with hypercholesterolemia in vivo to increase JNK1 (c-Jun N-terminal kinase 1) phosphorylation and NLRP3 inflammasome activation. The mechanism of JNK (c-Jun N-terminal kinase) activation in TET2 deficiency was increased promoter methylation and decreased expression of the JNK-inactivating dual-specificity phosphatase Dusp10. Active Tet1-deadCas9-targeted editing of Dusp10 promoter methylation abolished cholesterol-induced inflammasome activation in Tet2-deficient macrophages. Increased JNK1 signaling led to NLRP3 deubiquitylation and activation by the deubiquitinase BRCC3 (BRCA1/BRCA2-containing complex subunit 3). Accelerated atherosclerosis and neutrophil extracellular trap formation (NETosis) in Tet2 CH mice were reversed by holomycin, a BRCC3 deubiquitinase inhibitor, and also by hematopoietic deficiency of Abro1, an essential scaffolding protein in the BRCC3-containing cytosolic complex. Human TET2-/- macrophages displayed increased JNK1 and NLRP3 inflammasome activation, especially after cholesterol loading, with reversal by holomycin treatment, indicating human relevance. CONCLUSIONS: Hypercholesterolemia and TET2 deficiency converge on a common pathway of NLRP3 inflammasome activation mediated by JNK1 activation and BRCC3-mediated NLRP3 deubiquitylation, with potential therapeutic implications for the prevention of cardiovascular disease in TET2 CH.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Dioxigenases , Hipercolesterolemia , Animais , Humanos , Camundongos , Aterosclerose/metabolismo , Colesterol/metabolismo , Hematopoiese Clonal , Enzimas Desubiquitinantes , Proteínas de Ligação a DNA/genética , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
2.
J Clin Invest ; 131(1)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33108352

RESUMO

Zeb1, a zinc finger E-box binding homeobox epithelial-mesenchymal transition (EMT) transcription factor, confers properties of "stemness," such as self-renewal, in cancer. Yet little is known about the function of Zeb1 in adult stem cells. Here, we used the hematopoietic system as a well-established paradigm of stem cell biology to evaluate Zeb1-mediated regulation of adult stem cells. We employed a conditional genetic approach using the Mx1-Cre system to specifically knock out (KO) Zeb1 in adult hematopoietic stem cells (HSCs) and their downstream progeny. Acute genetic deletion of Zeb1 led to rapid-onset thymic atrophy and apoptosis-driven loss of thymocytes and T cells. A profound cell-autonomous self-renewal defect and multilineage differentiation block were observed in Zeb1-KO HSCs. Loss of Zeb1 in HSCs activated transcriptional programs of deregulated HSC maintenance and multilineage differentiation genes and of cell polarity consisting of cytoskeleton-, lipid metabolism/lipid membrane-, and cell adhesion-related genes. Notably, epithelial cell adhesion molecule (EpCAM) expression was prodigiously upregulated in Zeb1-KO HSCs, which correlated with enhanced cell survival, diminished mitochondrial metabolism, ribosome biogenesis, and differentiation capacity and an activated transcriptomic signature associated with acute myeloid leukemia (AML) signaling. ZEB1 expression was downregulated in AML patients, and Zeb1 KO in the malignant counterparts of HSCs - leukemic stem cells (LSCs) - accelerated MLL-AF9- and Meis1a/Hoxa9-driven AML progression, implicating Zeb1 as a tumor suppressor in AML LSCs. Thus, Zeb1 acts as a transcriptional regulator in hematopoiesis, critically coordinating HSC self-renewal, apoptotic, and multilineage differentiation fates required to suppress leukemic potential in AML.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Leucemia Mieloide Aguda/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Animais , Deleção de Genes , Células-Tronco Hematopoéticas/patologia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Knockout , Células-Tronco Neoplásicas/patologia , Proteínas Supressoras de Tumor/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
3.
Sci Rep ; 9(1): 12212, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31434974

RESUMO

GATA2, a zinc finger transcription factor predominantly expressed in hematopoietic cells, acts as an essential regulator of hematopoietic stem cell generation, survival and functionality. Loss and gain of GATA2 expression has been implicated in myelodysplastic syndrome and acute myeloid leukemia (AML) yet the precise biological impact of GATA2 expression on human AML cell fate decisions remains ambiguous. Herein, we performed large-scale bioinformatics that demonstrated relatively frequent GATA2 overexpression in AML patients as well as select human AML (or AML-like) cell lines. By using shRNAi to target GATA2 in these AML cell lines, and an AML cell line expressing normal levels of GATA2, we found that inhibition of GATA2 caused attenuated cell proliferation and enhanced apoptosis exclusively in AML cell lines that overexpress GATA2. We proceeded to pharmacologically inhibit GATA2 in concert with AML chemotherapeutics and found this augmented cell killing in AML cell lines that overexpress GATA2, but not in an AML cell line expressing normal levels of GATA2. These data indicate that inhibition of GATA2 enhances chemotherapy-mediated apoptosis in human AML cells overexpressing GATA2. Thus, we define novel insights into the oncogenic role of GATA2 in human AML cells and suggest the potential utilization of transient GATA2 therapeutic targeting in AML.


Assuntos
Apoptose , Proliferação de Células , Fator de Transcrição GATA2/metabolismo , Leucemia Mieloide Aguda/metabolismo , Proteínas de Neoplasias/metabolismo , Antineoplásicos/uso terapêutico , Fator de Transcrição GATA2/genética , Células HL-60 , Humanos , Células K562 , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Proteínas de Neoplasias/genética , Células THP-1
4.
Stem Cell Reports ; 13(2): 291-306, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31378673

RESUMO

Subversion of transcription factor (TF) activity in hematopoietic stem/progenitor cells (HSPCs) leads to the development of therapy-resistant leukemic stem cells (LSCs) that drive fulminant acute myeloid leukemia (AML). Using a conditional mouse model where zinc-finger TF Gata2 was deleted specifically in hematopoietic cells, we show that knockout of Gata2 leads to rapid and complete cell-autonomous loss of adult hematopoietic stem cells. By using short hairpin RNAi to target GATA2, we also identify a requirement for GATA2 in human HSPCs. In Meis1a/Hoxa9-driven AML, deletion of Gata2 impedes maintenance and self-renewal of LSCs. Ablation of Gata2 enforces an LSC-specific program of enhanced apoptosis, exemplified by attenuation of anti-apoptotic factor BCL2, and re-instigation of myeloid differentiation--which is characteristically blocked in AML. Thus, GATA2 acts as a critical regulator of normal and leukemic stem cells and mediates transcriptional networks that may be exploited therapeutically to target key facets of LSC behavior in AML.


Assuntos
Fator de Transcrição GATA2/genética , Células-Tronco Hematopoéticas/metabolismo , Animais , Apoptose , Autorrenovação Celular , Modelos Animais de Doenças , Fator de Transcrição GATA2/antagonistas & inibidores , Fator de Transcrição GATA2/metabolismo , Hematopoese , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Humanos , Estimativa de Kaplan-Meier , Leucemia Mieloide Aguda/mortalidade , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/terapia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo
5.
J Equine Sci ; 29(2): 47-51, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29991923

RESUMO

Anthelmintics are used as anti-worming agents. Although known to affect their target organisms, nothing has been published regarding their effect on other digestive tract organisms or on metabolites produced by them. The current work investigated effects of fenbendazole, a benzimidazole anthelmintic, on bacteria and ciliates in the equine digestive tract and on and their major metabolites. Animals receiving anthelmintic treatment had high faecal egg counts relative to controls. Analysis was performed over two weeks, with temporal differences detected in bacterial populations but with no other significant differences detected. This suggests fenbendazole has no detectable effect on organisms other than its targets. Moreover it does not appear to make a contribution to changing the resulting metabolome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...