Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(23): 10737-10755, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38781256

RESUMO

Nonheme Fe(II) and 2-oxoglutarate (2OG)-dependent histone lysine demethylases 2A (KDM2A) catalyze the demethylation of the mono- or dimethylated lysine 36 residue in the histone H3 peptide (H3K36me1/me2), which plays a crucial role in epigenetic regulation and can be involved in many cancers. Although the overall catalytic mechanism of KDMs has been studied, how KDM2 catalysis takes place in contrast to other KDMs remains unknown. Understanding such differences is vital for enzyme redesign and can help in enzyme-selective drug design. Herein, we employed molecular dynamics (MD) and combined quantum mechanics/molecular mechanics (QM/MM) to explore the complete catalytic mechanism of KDM2A, including dioxygen diffusion and binding, dioxygen activation, and substrate oxidation. Our study demonstrates that the catalysis of KDM2A is controlled by the conformational change of the second coordination sphere (SCS), specifically by a change in the orientation of Y222, which unlocks the 2OG rearrangement from off-line to in-line mode. The study demonstrates that the variant Y222A makes the 2OG rearrangement more favorable. Furthermore, the study reveals that it is the size of H3K36me3 that prevents the 2OG rearrangement, thus rendering the enzyme inactivity with trimethylated lysine. Calculations show that the SCS and long-range interacting residues that stabilize the HAT transition state in KDM2A differ from those in KDM4A, KDM7B, and KDM6A, thus providing the basics for the enzyme-selective redesign and modulation of KDM2A without influencing other KDMs.


Assuntos
Histona Desmetilases com o Domínio Jumonji , Simulação de Dinâmica Molecular , Histona Desmetilases com o Domínio Jumonji/metabolismo , Histona Desmetilases com o Domínio Jumonji/química , Humanos , Ácidos Cetoglutáricos/química , Ácidos Cetoglutáricos/metabolismo , Oxigênio/química , Oxigênio/metabolismo , Biocatálise , Teoria Quântica , Compostos Ferrosos/química , Compostos Ferrosos/metabolismo , Proteínas F-Box
2.
Chemistry ; 29(24): e202300854, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37009811

RESUMO

Invited for the cover of this issue are Christo Z. Christov and co-workers at Michigan Technological University, University of Oxford, and Michigan State University. The image depicts the oxygen diffusion channel in class 7 histone demethylase (PHF8) and ethylene-forming enzyme (EFE) and changes in the enzymes' conformations upon binding. Read the full text of the article at 10.1002/chem.202300138.


Assuntos
Histona Desmetilases , Ácidos Cetoglutáricos , Humanos , Histona Desmetilases/metabolismo , Ácidos Cetoglutáricos/metabolismo , Oxigenases , Oxigênio , Compostos Ferrosos/metabolismo , Fatores de Transcrição
3.
Chemistry ; 29(24): e202300138, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-36701641

RESUMO

This study investigates dioxygen binding and 2-oxoglutarate (2OG) coordination by two model non-heme FeII /2OG enzymes: a class 7 histone demethylase (PHF8) that catalyzes the hydroxylation of its H3K9me2 histone substrate leading to demethylation reactivity and the ethylene-forming enzyme (EFE), which catalyzes two competing reactions of ethylene generation and substrate l-Arg hydroxylation. Although both enzymes initially bind 2OG by using an off-line 2OG coordination mode, in PHF8, the substrate oxidation requires a transition to an in-line mode, whereas EFE is catalytically productive for ethylene production from 2OG in the off-line mode. We used classical molecular dynamics (MD), quantum mechanics/molecular mechanics (QM/MM) MD and QM/MM metadynamics (QM/MM-MetD) simulations to reveal that it is the dioxygen binding process and, ultimately, the protein environment that control the formation of the in-line FeIII -OO⋅- intermediate in PHF8 and the off-line FeIII -OO⋅- intermediate in EFE.


Assuntos
Histona Desmetilases , Oxigenases , Ácidos Cetoglutáricos/química , Oxigênio , Compostos Férricos , Compostos Ferrosos/metabolismo , Etilenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...