Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 87(4): 2063-2074, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-34581583

RESUMO

The well-known epoxide-Ritter reaction generally affords oxazolines with poor to average regioselectivity. Herein, a mechanism-based study of the less known diol-Ritter reaction has provided a highly regioselective procedure for the synthesis of 1-vic-amido-2-esters from either terminal epoxides or 1,2-diols via Lewis acid-catalyzed monoesterification. When treated with a stoichiometric Lewis acid catalyst (BF3), these diol monoesters form dioxonium cation intermediates that are ring-opened with nitrile nucleophiles to form nitrilium intermediates, which undergo rapid and irreversible hydration to give the desired amidoesters. Diester byproduct formation is irreversible and appears to occur through disproportionation of diol monoester. With chiral epoxide starting materials, the formation of amidoester occurs with retention of configuration and no apparent erosion of optical purity as determined by single-crystal X-ray analyses and chiral chromatography, respectively. The direct access to chiral vic-amidoesters is especially practical with regard to the synthesis of antibacterial oxazolidinone analogues of the Zyvox antimicrobial family.


Assuntos
Amino Álcoois , Compostos de Epóxi , Catálise , Compostos de Epóxi/química , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...