Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 33(43)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35850090

RESUMO

Understanding the linear and nonlinear optical (NLO) responses of two-dimensional nanomaterials is essential to effectively utilize them in various optoelectronic applications. Here, few-layer MoS2and WS2nanoflakes with lateral size less than 200 nm were prepared by liquid-phase exfoliation, and their linear and NLO responses were studied simultaneously using experimental measurements and theoretical simulations. Finite-difference time-domain (FDTD) simulations confirmed the redshift in the excitonic transitions when the thickness was increased above 10 nm indicating the layer-number dependent bandgap of nanoflakes. WS2nanoflakes exhibited around 5 times higher absorption to scattering cross-section ratio than MoS2nanoflakes at various wavelengths. Open aperture Z scan analysis of both the MoS2and WS2nanoflakes using 532 nm nanosecond laser pulses reveals strong nonlinear absorption activity with effective nonlinear absorption coefficient (ßeff) of 120 cm GW-1and 180 cm GW-1, respectively, which was attributed to the combined contributions of ground, singlet excited and triplet excited state absorption. FDTD simulation results also showed the signature of strong absorption density of few layer nanoflakes which may be account for their excellent NLO characteristics. Optical limiting threshold values of MoS2and WS2nanoflakes were obtained as ∼1.96 J cm-2and 0.88 J cm-2, respectively, which are better than many of the reported values. Intensity dependent switching from saturable absorption (SA) to reverse SA was also observed for MoS2nanoflakes when the laser intensity increased from 0.14 to 0.27 GW cm-2. The present study provides valuable information to improve the selection of two-dimensional nanomaterials for the design of highly efficient linear and nonlinear optoelectronic devices.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 272: 121011, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35158136

RESUMO

Linear and nonlinear optical properties of near-infrared laser grade dye LDS 821 in different solvents and Salmon Deoxyribonucleic acid (DNA) were studied using spectroscopic and Z-scan techniques. UV-Vis absorption spectrum of the dye shows a bathochromic shift with a decrease in the solvent polarity parameter, and in DNA, the dye exhibits a hypochromic shift. The fluorescence spectrum of the dye does not show any notable correlation with the solvent polarity parameter, but in DNA, the fluorescence intensity of the dye decreases with the incremental addition of DNA. Molecular docking studies reveal that the dye intercalates on the major grooves of DNA. Nonlinear optical properties of the dye in different solvents and phosphate buffer solution with varying DNA concentrations were studied using the Z-scan technique using a Q-switched Nd: YAG laser operating at fundamental and second harmonics. A closed and open aperture Z-scan of dye in different solvents was carried out to estimate the nonlinear refractive index, excited-state absorption cross-section, and two-photon absorption coefficient (TPA). The variation in nonlinear optical properties of the dye in different solvents was due to solvent-induced structural modifications. Theoretical investigation on nonlinear optical properties of the dye in different solvents was carried out using density function theory. The theoretical first and second-order hyperpolarizability was calculated using B3LYP functional. The predicated nonlinear optical parameters of the dye in different solvents does not show any direct correlation with solvent polarity. Nonlinear absorption of the dye in phosphate buffer solution (PBS) and DNA were estimated. The nonlinear absorption of the dye in PBS decreases with the addition of DNA. Molecular docking studies were carried out to determine the structural changes induced in dye due to the intercalation with DNA.


Assuntos
Fótons , Refratometria , DNA , Simulação de Acoplamento Molecular , Solventes/química
3.
Biomater Sci ; 8(21): 6082-6092, 2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33000782

RESUMO

We report a commercially available benzothiazolium based dye LDS 821 (Styryl 9M) as a near infrared fluorescent probe for the detection of lysozyme amyloid fibrils. Change in the photophysical properties of the dye with respect to the change in viscosity of the environment is investigated. Increment in fluorescence lifetime and quantum yield with increment in viscosity proves the dye as a molecular rotor. The dye, upon binding with lysozyme fibrils, exhibits a red shift in the absorption spectrum with increased quantum yield. Strong fluorescence emission near the biological window as compared with Thioflavin T makes the LDS 821 dye a potential probe for imaging amyloid fibrils in vivo. Molecular docking studies were carried out to understand the mode of interaction between the dye and amyloid fibrils. Nonlinear optical properties of the dye upon incorporation with amyloid fibrils were explored, and they show a sizeable enhancement in two photon absorption with an increase in the concentration of amyloid fibrils. The findings suggest that the nonlinear optical absorption of the LDS 821 dye can be used as an alternative marker for amyloid fibrils.


Assuntos
Amiloide , Corantes Fluorescentes , Simulação de Acoplamento Molecular , Muramidase , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...