Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37109942

RESUMO

In this study, morphology and in vitro response of electroconductive composite nanofibers were explored for biomedical use. The composite nanofibers were prepared by blending the piezoelectric polymer poly(vinylidene fluoride-trifluorethylene) (PVDF-TrFE) and electroconductive materials with different physical and chemical properties such as copper oxide (CuO), poly(3-hexylthiophene) (P3HT), copper phthalocyanine (CuPc), and methylene blue (MB) resulting in unique combinations of electrical conductivity, biocompatibility, and other desirable properties. Morphological investigation via SEM analysis has remarked some differences in fiber size as a function of the electroconductive phase used, with a reduction of fiber diameters for the composite fibers of 12.43% for CuO, 32.87% for CuPc, 36.46% for P3HT, and 63% for MB. This effect is related to the peculiar electroconductive behavior of fibers: measurements of electrical properties showed the highest ability to transport charges of methylene blue, in accordance with the lowest fibers diameters, while P3HT poorly conducts in air but improves charge transfer during the fiber formation. In vitro assays showed a tunable response of fibers in terms of viability, underlining a preferential interaction of fibroblast cells to P3HT-loaded fibers that can be considered the most suitable for use in biomedical applications. These results provide valuable information for future studies to be addressed at optimizing the properties of composite nanofibers for potential applications in bioengineering and bioelectronics.

2.
Sensors (Basel) ; 23(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36772646

RESUMO

Fiber electronics, such as those produced by the electrospinning technique, have an extensive range of applications including electrode surfaces for batteries and sensors, energy storage, electromagnetic interference shielding, antistatic coatings, catalysts, drug delivery, tissue engineering, and smart textiles. New composite materials and blends from conductive-semiconductive polymers (C-SPs) offer high surface area-to-volume ratios with electrical tunability, making them suitable for use in fields including electronics, biofiltration, tissue engineering, biosensors, and "green polymers". These materials and structures show great potential for embedded-electronics tissue engineering, active drug delivery, and smart biosensing due to their electronic transport behavior and mechanical flexibility with effective biocompatibility. Doping, processing methods, and morphologies can significantly impact the properties and performance of C-SPs and their composites. This review provides an overview of the current literature on the processing of C-SPs as nanomaterials and nanofibrous structures, mainly emphasizing the electroactive properties that make these structures suitable for various applications.

3.
Polymers (Basel) ; 14(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36501468

RESUMO

In this work, the electrospinning technique is used to fabricate a polymer-polymer coaxial structure nanofiber from the p-type regioregular polymer poly(3-hexylthiophene-2,5-diyl) (P3HT) and the n-type conjugated ladder polymer poly(benzimidazobenzophenanthroline) (BBL) of orthogonal solvents. Generally, the fabrication of polymeric coaxial nanostructures tends to be troublesome. Using the electrospinning technique, P3HT was successfully used as the core, and the BBL as the shell, thus conceptually forming a p-n junction that is cylindrical in form with diameters in a range from 280 nm to 2.8 µm. The UV-VIS of P3HT/PS blend solution showed no evidence of separation or precipitation, while the combined solutions of P3HT/PS and BBL were heterogeneous. TEM images show a well-formed coaxial structure that is normally not expected due to rapid reaction and solidification when mixed in vials in response to orthogonal solubility. For this reason, extruding it by using electrostatic forces promoted a quick elongation of the polymers while forming a concise interface. Single nanofiber electrical characterization demonstrated the conductivity of the coaxial surface of ~1.4 × 10-4 S/m. Furthermore, electrospinning has proven to be a viable method for the fabrication of pure semiconducting coaxial nanofibers that can lead to the desired fabrication of fiber-based electronic devices.

4.
Adv Mater ; 31(7): e1805921, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30589117

RESUMO

Together with the evolution of digital health care, the wearable electronics field has evolved rapidly during the past few years and is expected to be expanded even further within the first few years of the next decade. As the next stage of wearables is predicted to move toward integrated wearables, nanomaterials and nanocomposites are in the spotlight of the search for novel concepts for integration. In addition, the conversion of current devices and attachment-based wearables into integrated technology may involve a significant size reduction while retaining their functional capabilities. Nanomaterial-based wearable sensors have already marked their presence with a significant distinction while nanomaterial-based wearable actuators are still at their embryonic stage. This review looks into the contribution of nanomaterials and nanocomposites to wearable technology with a focus on wearable sensors and actuators.


Assuntos
Nanoestruturas , Dispositivos Eletrônicos Vestíveis , Acelerometria/instrumentação , Sistemas de Liberação de Medicamentos/instrumentação , Humanos , Monitorização Fisiológica/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...