Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Synth Biol ; 11(2): 713-731, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35025506

RESUMO

Using Escherichia coli as the representative biofilm former, we report here the development of an in silico model built by simulating events that transform a free-living bacterial entity into self-encased multicellular biofilms. Published literature on ∼300 genes associated with pathways involved in biofilm formation was curated, static maps were created, and suitably interconnected with their respective metabolites using ordinary differential equations. Precise interplay of genetic networks that regulate the transitory switching of bacterial growth pattern in response to environmental changes and the resultant multicomponent synthesis of the extracellular matrix were appropriately represented. Subsequently, the in silico model was analyzed by simulating time-dependent changes in the concentration of components by using the R and python environment. The model was validated by simulating and verifying the impact of key gene knockouts (KOs) and systematic knockdowns on biofilm formation, thus ensuring the outcomes were comparable with the reported literature. Similarly, specific gene KOs in laboratory and pathogenic E. coli were constructed and assessed. MiaA, YdeO, and YgiV were found to be crucial in biofilm development. Furthermore, qRT-PCR confirmed the elevation of expression in biofilm-forming clinical isolates. Findings reported in this study offer opportunities for identifying biofilm inhibitors with applications in multiple industries. The application of this model can be extended to the health care sector specifically to develop novel adjunct therapies that prevent biofilms in medical implants and reduce emergence of biofilm-associated resistant polymicrobial-chronic infections. The in silico framework reported here is open source and accessible for further enhancements.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Bactérias , Biofilmes , Simulação por Computador , Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Humanos
2.
ACS Infect Dis ; 7(11): 3009-3024, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34699190

RESUMO

We discovered azaindole-based compounds with weak innate activity that exhibit substantial potentiation of antibacterial activities of different antibiotics, viz., rifampicin, erythromycin, solithromycin, and novobiocin in Gram-negative bacteria. In the presence of the azaindole derivatives, these antibiotics exhibited submicromolar minimum inhibitory concentrations (MICs) against Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii. The fold improvements in MIC of these antibiotics that were otherwise weak or inactive on their own against these bacteria were also observed against drug-resistant clinical isolates. Our studies indicate that this selective potentiation is probably through destabilization of the outer membrane's integrity, known to be regulated by the lipopolysaccharides (LPS). Thus, the azaindole based compounds described here open opportunities for those antibiotics that are otherwise ineffective due to LPS mediated entry barriers in Gram-negative bacteria.


Assuntos
Acinetobacter baumannii , Antibacterianos , Antibacterianos/farmacologia , Bactérias Gram-Negativas , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana
3.
Nat Commun ; 12(1): 5400, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34518546

RESUMO

OqxB is an RND (Resistance-Nodulation-Division) efflux pump that has emerged as a factor contributing to the antibiotic resistance in Klebsiella pneumoniae. OqxB underwent horizontal gene transfer and is now seen in other Gram-negative bacterial pathogens including Escherichia coli, Enterobacter cloacae and Salmonella spp., further disseminating multi-drug resistance. In this study, we describe crystal structure of OqxB with n-dodecyl-ß-D-maltoside (DDM) molecules bound in its substrate-binding pocket, at 1.85 Å resolution. We utilize this structure in computational studies to predict the key amino acids contributing to the efflux of fluoroquinolones by OqxB, distinct from analogous residues in related transporters AcrB and MexB. Finally, our complementation assays with mutated OqxB and minimum inhibitory concentration (MIC) experiments with clinical isolates of E. coli provide further evidence that the predicted structural features are indeed involved in ciprofloxacin efflux.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla/genética , Klebsiella pneumoniae/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação/genética , Cristalografia por Raios X , Klebsiella pneumoniae/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Relação Estrutura-Atividade
4.
Sci Rep ; 8(1): 7263, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29740005

RESUMO

The mechanism of efflux is a tour-de-force in the bacterial armoury that has thwarted the development of novel antibiotics. We report the discovery of a novel chemical series with potent antibacterial properties that was engineered to overcome efflux liability. Compounds liable to efflux specifically via the Resistance Nodulation and cell Division (RND) pump, AcrAB-TolC were chosen for a hit to lead progression. Using structure-based design, the compounds were optimised to lose their binding to the efflux pump, thereby making them potent on wild-type bacteria. We discovered these compounds to be pro-drugs that require activation in E. coli by specific bacterial nitroreductases NfsA and NfsB. Hit to lead chemistry led to the generation of compounds that were potent on wild-type and multi-drug resistant clinical isolates of E. coli, Shigella spp., and Salmonella spp. These compounds are bactericidal and efficacious in a mouse thigh infection model.


Assuntos
Antibacterianos/química , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Proteínas de Escherichia coli/química , Pró-Fármacos/química , Tiofenos/química , Animais , Antibacterianos/síntese química , Antibacterianos/farmacologia , Divisão Celular/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/genética , Proteínas de Escherichia coli/efeitos dos fármacos , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Pró-Fármacos/síntese química , Pró-Fármacos/farmacologia , Conformação Proteica/efeitos dos fármacos , Salmonella/química , Salmonella/efeitos dos fármacos , Salmonella/patogenicidade , Shigella/química , Shigella/efeitos dos fármacos , Shigella/patogenicidade , Tiofenos/síntese química , Tiofenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...