Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Res ; 281: 127610, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38271775

RESUMO

Water stress is a major limiting factor for agricultural production under current and projected climate change scenarios. As a sustainable strategy, plant growth-promoting bacterial consortia have been used to reduce plant water stress. However, few studies have examined the effects of stress on multi-trait efficiency and interactivity of bacterial species. In this study, we used several in-vitro experiments, plant assays and greenhouse trials to investigate the effects of stress and bacterial consortia on 1-aminocyclopropane-1-carboxylic acid deaminase (ACCD) activities, indole-3-acetic acid (IAA) production and plant growth-promoting traits (Phosphate-solubilization, starch hydrolysis, siderophores and ammonium production). We further assessed biofilm formation and the chemotactic behaviour in response to ACC. A total of fifteen ACCD rhizobacteria with multiple growth-promoting traits from the dominant plant species from the hyperseasonal Aripo Savannas were screened in this study. Five of the isolates were further analyzed based on their ACCD activities and were tested in single and dual consortium to assess their abilities in promoting growth under simulated drought stress (-0.35 MPa) and chemically induced ACC conditions (0.03 mM). Our findings showed that bacteria which produce high concentrations of IAA affected the isolates' ability to promote growth under stress, irrespective of microbial combination with ACCD activity above the minimal threshold of 20 nmol α-ketobutyrate mg-1 h-1. Biofilm production with co-culture interaction varied greatly across treatments, however, the general trend showed an increase in biofilm under stress induce conditions. The best performing co-culture, UWIGT-83 and UWIGT-120 (Burkholderia sp.) showed enhanced growth in germination assays and in greenhouse trials with Capsicum chinense (Moruga red hot peppers) under drought stress, when compared to non-inoculated treatments. The findings highlight the importance of testing interactivity of bacterial species with multiple growth promoting traits under stress conditions; and proposed the use of ACC growth media as a novel biofilm screening method for selecting potential stress plant growth-promoting bacteria. Better screening strategies for appropriate plant growth-promoting bacteria may narrow the inconsistency observed between laboratory and field trials.


Assuntos
Bactérias , Desidratação , Desenvolvimento Vegetal , Germinação , Plantas , Raízes de Plantas/microbiologia , Carbono-Carbono Liases
2.
Sci Total Environ ; 769: 145214, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33493909

RESUMO

The natural variation of multiple abiotic stresses in hyper-seasonal edaphic savanna provides a unique opportunity to study the rhizobacteriome community structure of plants adapted to climate change-like conditions in the humid tropics. In this study, we evaluated changes in soil, plant and rhizobacteriome community structure parameters across seasons (wet and dry) in two edaphic savannas (SV-1 and SV-5) using four dominant plant species. We then examined relationships between rhizobacteriome community structure and soil properties, plant biomass, and conventional and novel root traits. We further hypothesized that plants adapted to the Aripo Savanna had a core rhizobacteriome, which was specific to plant species and related to root foraging traits. Our results showed that cation exchange capacity (CEC) and the concentration of micronutrients (Fe, Cu and B) were the only soil factors that differed across savanna and season, respectively. Plant biomass traits were generally higher in the dry season, with a higher allocation to root growth in SV-5. Root traits were more plastic in SV-5, and network length-distribution was the only root trait which showed a consistent pattern of lower values in the dry season for three of the dominant plant species. Rhizobacterial community compositions were dominated by Proteobacteria and Acidobacteria, as well as WPS-2, which is dominant in extreme environments. We identified a shared core rhizobacteriome across plant species and savannas. Cation exchange capacity was a major driver of rhizobacterial community assemblies across savannas. Savanna-specific drivers of rhizobacterial community assemblies included CEC and Fe for SV-1, and CEC, TDS, NH4+, NO3-, Mn, K, and network length-distribution for SV-5. Plant factors on the microbiome were minimal, and host selectivity was mediated by the seasonal changes. We conclude that edaphoclimatic factors (soil and season) are the key determinants influencing rhizobacteriome community structure in multiple stressed-environments, which are ecologically similar to the Aripo Savanna.


Assuntos
Ecossistema , Pradaria , Biomassa , Plantas , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...