Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; : e202401674, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839567

RESUMO

Nitrile-aminothiol conjugation (NATC) stands out as a promising biocompatible ligation technique due to its high chemo-selectivity. Herein we investigated the reactivity and substrate scope of NAT conjugation chemistry, thus developing a novel pH dependent orthogonal NATC as a valuable tool for chemical biology. The study of reaction kinetics elucidated that the combination of heteroaromatic nitrile and aminothiol groups led to the formation of an optimal bioorthogonal pairing, which is pH dependent. This pairing system was effectively utilized for sequential and dual conjugation. Subsequently, these rapid (≈1 h) and high yield (>90%) conjugation strategies were successfully applied to a broad range of complex biomolecules, including oligonucleotides, chelates, small molecules and peptides. The effectiveness of this conjugation chemistry was demonstrated by synthesizing a fluorescently labelled antimicrobial peptide-oligonucleotide complex as a dual conjugate to imaging in live cells. This first-of-its-kind sequential NATC approach unveils unprecedented opportunities in modern chemical biology, showcasing exceptional adaptability in rapidly creating structurally complex bioconjugates. Furthermore, the results highlight its potential for versatile applications across fundamental and translational biomedical research.

2.
mSphere ; 8(1): e0053722, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36622250

RESUMO

Outer membrane vesicles (OMVs) secreted by Gram-negative bacteria serve as transporters for the delivery of cargo such as virulence and antibiotic resistance factors. OMVs play a key role in the defense against membrane-targeting antibiotics such as the polymyxin B. Herein, we conducted comparative proteomics of OMVs from paired Klebsiella pneumoniae ATCC 700721 polymyxin-susceptible (polymyxin B MIC = 0.5 mg/L) and an extremely resistant (polymyxin B MIC ≥128 mg/L), following exposure to 2 mg/L of polymyxin B. Comparative profiling of the OMV subproteome of each strain revealed proteins from multiple perturbed pathways, particularly in the polymyxin-susceptible strain, including outer membrane assembly (lipopolysaccharide, O-antigen, and peptidoglycan biosynthesis), cationic antimicrobial peptide resistance, ß-lactam resistance, and quorum sensing. In the polymyxin-susceptible strain, polymyxin B treatment reduced the expression of OMV proteins in the pathways related to adhesion, virulence, and the cell envelope stress responses, whereas, in the polymyxin-resistant strain, the proteins involved in LPS biosynthesis, RNA degradation, and nucleotide excision repair were significantly overexpressed in response to polymyxin B treatment. Intriguingly, the key polymyxin resistance enzymes 4-amino-4-deoxy-l-arabinose transferase and the PhoPQ two-component protein kinase were significantly downregulated in the OMVs of the polymyxin-susceptible strain. Additionally, a significant reduction in class A ß-lactamase proteins was observed following polymyxin B treatment in the OMVs of both strains, particularly the OMVs of the polymyxin-susceptible strain. These findings shed new light on the OMV subproteome of extremely polymyxin resistant K. pneumoniae, which putatively may serve as active decoys to make the outer membrane more impervious to polymyxin attack. IMPORTANCE OMVs can help bacteria to fight antibiotics not only by spreading antibiotic resistance genes but also by acting as protective armor against antibiotics. By employing proteomics, we found that OMVs have a potential role in shielding K. pneumoniae and acting as decoys to polymyxin attack, through declining the export of proteins (e.g., 4-amino-4-deoxy-l-arabinose transferase) involved in polymyxin resistance. Furthermore, polymyxin B treatment of both strains leads to shedding of the OMVs with perturbed proteins involved in outer membrane remodeling (e.g., LPS biosynthesis) as well as pathogenic potential of K. pneumoniae (e.g., quorum sensing). The problematic extended spectrum beta-lactamases SHV and TEM were significantly reduced in both strains, suggesting that polymyxin B may act as a potentiator to sensitize the bacterium to ß-lactam antibiotics. This study highlights the importance of OMVs as "molecular mules" for the intercellular transmission and delivery of resistance and cellular repair factors in the bacterial response to polymyxins.


Assuntos
Polimixina B , Polimixinas , Polimixina B/farmacologia , Polimixina B/metabolismo , Polimixinas/farmacologia , Klebsiella pneumoniae/genética , Preparações Farmacêuticas , Lipopolissacarídeos/metabolismo , Proteômica , Antibacterianos/farmacologia , Antibacterianos/metabolismo
3.
Front Chem ; 10: 843163, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35372270

RESUMO

Peptide-Peptide Nucleic Acid (PNA) conjugates targeting essential bacterial genes have shown significant potential in developing novel antisense antimicrobials. The majority of efforts in this area are focused on identifying different PNA targets and the selection of peptides to deliver the peptide-PNA conjugates to Gram-negative bacteria. Notably, the selection of a linkage strategy to form peptide-PNA conjugate plays an important role in the effective delivery of PNAs. Recently, a unique Cysteine- 2-Cyanoisonicotinamide (Cys-CINA) click chemistry has been employed for the synthesis of cyclic peptides. Considering the high selectivity of this chemistry, we investigated the efficiency of Cys-CINA conjugation to synthesize novel antimicrobial peptide-PNA conjugates. The PNA targeting acyl carrier protein gene (acpP), when conjugated to the membrane-active antimicrobial peptides (polymyxin), showed improvement in antimicrobial activity against multidrug-resistant Gram-negative Acinetobacter baumannii. Thus, indicating that the Cys-CINA conjugation is an effective strategy to link the antisense oligonucleotides with antimicrobial peptides. Therefore, the Cys-CINA conjugation opens an exciting prospect for antimicrobial drug development.

4.
Chemistry ; 27(5): 1620-1625, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33289186

RESUMO

The AgI -promoted reaction of thiolactams with N-Boc amino acids yields an N-(α-aminoacyl) lactam that can rearrange through an acyl transfer process. Boc-deprotection results in convergence to the ring-expanded adduct, thereby facilitating an overall insertion of an amino acid into the thioamide bond to generate medium-sized heterocycles. Application to the site-specific insertion of amino acids into cyclic peptides is demonstrated.


Assuntos
Aminoácidos/química , Imidas/química , Lactamas/química , Tioamidas/química , Peptídeos Cíclicos/química
5.
J Pept Sci ; 26(3): e3239, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31847053

RESUMO

Bicyclic analogues of celogentin C have been synthesized in which the side chain-side chain cross-links are replaced by thioether bonds. Several of the simplified bicyclic peptides displayed potent inhibition of tubulin polymerization.


Assuntos
Peptídeos Cíclicos/farmacologia , Tubulina (Proteína)/química , Cromatografia Líquida de Alta Pressão , Estrutura Molecular , Peptídeos Cíclicos/química , Polimerização/efeitos dos fármacos , Relação Estrutura-Atividade
6.
Anal Chem ; 91(19): 12129-12133, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31490671

RESUMO

Dityrosine cross-linking of Aß peptides and α-synuclein is increasingly becoming recognized as a biomarker of neuropathological diseases. However, there remains a need for the development of analytical methods that enable the specific and selective identification of dityrosine cross-linked proteins and peptides in complex biological samples. Here, we report that the gas-phase fragmentation of protonated dityrosine cross-linked peptides under ultraviolet photodissociation (UVPD) tandem mass spectrometry (MS/MS) conditions results in the cleavage across Cα and Cß atoms of the dityrosine residue. This Cα-Cß cleavage in UVPD-MS/MS results in the formation of diagnostic pairs of product ions, providing information on the two individual peptides involved in the cross-linking, resolving the intrinsic "n2 problem" plaguing the identification of this post-translational modification (PTM) by tandem mass spectrometry. Sequencing of a heterodimeric dityrosine cross-linked peptide was demonstrated using hybrid UVPD-MS/MS and CID-MS3 on a diagnostic pair of product ions. In combination with dedicated MS-cleavable MSn software, UVPD-MSn therefore provides an avenue to selectively discover and describe dityrosine cross-linked peptides. Additionally, observation of dityrosine-specific "reporter ions" at m/z 240.1019 and m/z 223.0752 in UVPD-MS/MS will be useful for the validation of the dityrosine cross-linked peptides.


Assuntos
Peptídeos/química , Espectrometria de Massas em Tandem/métodos , Tirosina/análogos & derivados , Peptídeos beta-Amiloides/análise , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Peptídeos/análise , Peptídeos/metabolismo , Processos Fotoquímicos , Processamento de Proteína Pós-Traducional , Análise de Sequência de Proteína , Tirosina/química , Raios Ultravioleta
7.
Angew Chem Int Ed Engl ; 58(15): 4998-5002, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30779282

RESUMO

Peptide macrocyclization is often a slow process, plagued by epimerization and cyclodimerization. Herein, we describe a new method for peptide macrocyclization employing the AgI -promoted transformation of peptide thioamides. The AgI has a dual function: chemoselectively activating the thioamide and tethering the N-terminal thioamide to the C-terminal carboxylate. Extrusion of Ag2 S generates an isoimide intermediate, which undergoes acyl transfer to generate the native cyclic peptide, resulting in a rapid, traceless macrocylization process. Cyclic peptides are furnished in high yields within 1 hour, free of epimerization and cyclodimerization.

8.
Angew Chem Int Ed Engl ; 55(27): 7847-51, 2016 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-27271202

RESUMO

The impact of geometrically constrained cis α,ß-unsaturated γ-amino acids on the folding of α,γ-hybrid peptides was investigated. Structure analysis in single crystals and in solution revealed that the cis carbon-carbon double bonds can be accommodated into the 12-helix without deviation from the overall helical conformation. The helical structures are stabilized by 4→1 hydrogen bonding in a similar manner to the 12-helices of ß-peptides and the 310 helices of α-peptides. These results show that functional cis carbon-carbon double bonds can be accommodated into the backbone of helical peptides.


Assuntos
Carbono/química , Peptídeos/química , Cristalografia por Raios X , Ligação de Hidrogênio , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...