Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Chem Biol ; 26(4): 584-592.e6, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30745239

RESUMO

Super-resolution microscopy requires that subcellular structures are labeled with bright and photostable fluorophores, especially for live-cell imaging. Organic fluorophores may help here as they can yield more photons-by orders of magnitude-than fluorescent proteins. To achieve molecular specificity with organic fluorophores in live cells, self-labeling proteins are often used, with HaloTags and SNAP-tags being the most common. However, how these two different tagging systems compare with each other is unclear, especially for stimulated emission depletion (STED) microscopy, which is limited to a small repertoire of fluorophores in living cells. Herein, we compare the two labeling approaches in confocal and STED imaging using various proteins and two model systems. Strikingly, we find that the fluorescent signal can be up to 9-fold higher with HaloTags than with SNAP-tags when using far-red rhodamine derivatives. This result demonstrates that the labeling strategy matters and can greatly influence the duration of super-resolution imaging.


Assuntos
Corantes Fluorescentes/análise , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Proteínas/análise , Rodaminas/análise , Animais , Drosophila , Proteínas de Fluorescência Verde/análise , Células HeLa , Humanos , Proteínas Recombinantes de Fusão/análise , Coloração e Rotulagem/métodos
2.
ACS Cent Sci ; 4(10): 1379-1393, 2018 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-30410976

RESUMO

New methods for delivering proteins into the cytosol of mammalian cells are being reported at a rapid pace. Differentiating between these methods in a quantitative manner is difficult, however, as most assays for evaluating cytosolic protein delivery are qualitative and indirect and thus often misleading. Here we make use of fluorescence correlation spectroscopy (FCS) to determine with precision and accuracy the relative efficiencies with which seven different previously reported "cell-penetrating peptides" (CPPs) transport a model protein cargo-the self-labeling enzyme SNAP-tag-beyond endosomal membranes and into the cytosol. Using FCS, we discovered that the miniature protein ZF5.3 is an exceptional vehicle for delivering SNAP-tag to the cytosol. When delivered by ZF5.3, SNAP-tag can achieve a cytosolic concentration as high as 250 nM, generally at least 2-fold and as much as 6-fold higher than any other CPP evaluated. Additionally, we show that ZF5.3 can be fused to a second enzyme cargo-the engineered peroxidase APEX2-and reliably delivers the active enzyme to the cell interior. As FCS allows one to realistically assess the relative merits of protein transduction domains, we anticipate that it will greatly accelerate the identification, evaluation, and optimization of strategies to deliver large, intact proteins to intracellular locales.

3.
Biochemistry ; 56(39): 5194-5201, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28792749

RESUMO

Living cells are complex and dynamic assemblies that carefully sequester and orchestrate multiple diverse processes that enable growth, division, regulation, movement, and communication. Membrane-bound organelles such as the endoplasmic reticulum, mitochondria, plasma membrane, and others are integral to these processes, and their functions demand dynamic reorganization in both space and time. Visualizing these dynamics in live cells over long time periods demands probes that label discrete organelles specifically, at high density, and withstand long-term irradiation. Here we describe the evolution of our work on the development of a set of high-density environmentally sensitive (HIDE) membrane probes that enable long-term, live-cell nanoscopy of the dynamics of multiple organelles in live cells using single-molecule switching and stimulated emission depletion imaging modalities.


Assuntos
Imagem Molecular/métodos , Organelas/metabolismo , Células HeLa , Humanos , Membranas Intracelulares/metabolismo , Razão Sinal-Ruído , Fatores de Tempo
4.
Nat Biotechnol ; 35(8): 773-780, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28671662

RESUMO

Imaging cellular structures and organelles in living cells by long time-lapse super-resolution microscopy is challenging, as it requires dense labeling, bright and highly photostable dyes, and non-toxic conditions. We introduce a set of high-density, environment-sensitive (HIDE) membrane probes, based on the membrane-permeable silicon-rhodamine dye HMSiR, that assemble in situ and enable long time-lapse, live-cell nanoscopy of discrete cellular structures and organelles with high spatiotemporal resolution. HIDE-enabled nanoscopy movies span tens of minutes, whereas movies obtained with labeled proteins span tens of seconds. Our data reveal 2D dynamics of the mitochondria, plasma membrane and filopodia, and the 2D and 3D dynamics of the endoplasmic reticulum, in living cells. HIDE probes also facilitate acquisition of live-cell, two-color, super-resolution images, expanding the utility of nanoscopy to visualize dynamic processes and structures in living cells.


Assuntos
Estruturas Celulares/ultraestrutura , Corantes Fluorescentes/análise , Corantes Fluorescentes/química , Microscopia de Fluorescência/métodos , Nanotecnologia/métodos , Células HeLa , Humanos
5.
Angew Chem Int Ed Engl ; 56(35): 10408-10412, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28679029

RESUMO

Super-resolution imaging of live cells over extended time periods with high temporal resolution requires high-density labeling and extraordinary fluorophore photostability. Herein, we achieve this goal by combining the attributes of the high-density plasma membrane probe DiI-TCO and the photostable STED dye SiR-Tz. These components undergo rapid tetrazine ligation within the plasma membrane to generate the HIDE probe DiI-SiR. Using DiI-SiR, we visualized filopodia dynamics in HeLa cells over 25 min at 0.5 s temporal resolution, and visualized dynamic contact-mediated repulsion events in primary mouse hippocampal neurons over 9 min at 2 s temporal resolution. HIDE probes such as DiI-SiR are non-toxic and do not require transfection, and their apparent photostability significantly improves the ability to monitor dynamic processes in live cells at super-resolution over biologically relevant timescales.


Assuntos
Membrana Celular/química , Corantes Fluorescentes/química , Nanotecnologia , Imagem Óptica , Células HeLa , Humanos , Microscopia de Fluorescência , Estrutura Molecular , Células Tumorais Cultivadas
6.
Angew Chem Int Ed Engl ; 53(38): 10242-6, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25081303

RESUMO

We report a lipid-based strategy to visualize Golgi structure and dynamics at super-resolution in live cells. The method is based on two novel reagents: a trans-cyclooctene-containing ceramide lipid (Cer-TCO) and a highly reactive, tetrazine-tagged near-IR dye (SiR-Tz). These reagents assemble via an extremely rapid "tetrazine-click" reaction into Cer-SiR, a highly photostable "vital dye" that enables prolonged live-cell imaging of the Golgi apparatus by 3D confocal and STED microscopy. Cer-SiR is nontoxic at concentrations as high as 2 µM and does not perturb the mobility of Golgi-resident enzymes or the traffic of cargo from the endoplasmic reticulum through the Golgi and to the plasma membrane.


Assuntos
Ceramidas/química , Corantes/análise , Corantes/química , Complexo de Golgi/metabolismo , Sobrevivência Celular , Complexo de Golgi/enzimologia , Células HeLa , Humanos , Microscopia Confocal , Microscopia de Fluorescência
7.
J Org Chem ; 78(2): 762-9, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23237484

RESUMO

Nucleophilic aromatic substitution of 2- or 4-cyanoazines with the anions derived from aliphatic α,α-disubstituted esters and nitriles leads to displacement of the cyanide function. Enabling cyanides to be used as highly active leaving groups in S(N)Ar reactions provides additional flexibility in starting materials for synthesis. We show that, in many cases, the cyanide leaving group is displaced preferentially in the presence of halogens. The resulting heteroaryl iodides, bromides, and chlorides subsequently can be used as handles for further chemical diversification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...