Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Metab Pers Ther ; 2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33780198

RESUMO

OBJECTIVES: Drug-drug interaction studies for hyaluronidase safety assessments have evaluated only animal-derived enzyme preparations. We therefore set out to evaluate whether high-dose administration of two antihistamines, a potent corticosteroid, steroid hormone, adrenocorticotropic hormone (ACTH), or salicylic acid would alter the dispersive activity of recombinant human hyaluronidase PH20 (rHuPH20). METHODS: NCr nu/nu mice were pretreated with diphenhydramine, cetirizine, dexamethasone, estrogen, ACTH, salicylic acid, and/or neutral-buffered saline (NBS). An hour following final pretreatment, dosed mice were anesthetized with ketamine/xylazine and placed in an imaging chamber. A 120 mg/mL immunoglobulin G (IgG) solution with 0.3 µg/mL IgGDL755 (labeled IgG) was injected intradermally, with/without 2,000 U/mL rHuPH20. Fluorescent images of labeled IgG dispersion were acquired ≤20 min post injection. RESULTS: Dispersion of high-concentration labeled IgG combined with rHuPH20 was greater at all time points vs. antibody alone. At 20 min post injection (last time point), the antibody dispersion area was significantly increased with rHuPH20 vs. without rHuPH20 (p≤0.005). The relative percent increase in antibody dispersion with rHuPH20 ranged from 22.8‒106.6% over the 20-min time course, compared with the corresponding non-rHuPH20 treated groups. The area of labeled IgG dispersion was statistically similar between rHuPH20 groups pretreated with an active compound and their paired NBS pretreated controls. CONCLUSIONS: The addition of 2,000 U/mL rHuPH20 to a high-concentration antibody solution reproducibly incre-ased local antibody dispersion. Systemic pretreatment with diphenhydramine, cetirizine, dexamethasone, estrogen, ACTH, or salicylic acid did not affect the enzymatic spreading activity of rHuPH20, as measured by intradermal dispersion of labeled IgG in mice.

2.
Clin Cancer Res ; 24(19): 4798-4807, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30084839

RESUMO

Purpose: The tumor microenvironment (TME) evolves to support tumor progression. One marker of more aggressive malignancy is hyaluronan (HA) accumulation. Here, we characterize biological and physical changes associated with HA-accumulating (HA-high) tumors.Experimental Design: We used immunohistochemistry, in vivo imaging of tumor pH, and microdialysis to characterize the TME of HA-high tumors, including tumor vascular structure, hypoxia, tumor perfusion by doxorubicin, pH, content of collagen. and smooth muscle actin (α-SMA). A novel method was developed to measure real-time tumor-associated soluble cytokines and growth factors. We also evaluated biopsies of murine and pancreatic cancer patients to investigate HA and collagen content, important contributors to drug resistance.Results: In immunodeficient and immunocompetent mice, increasing tumor HA content is accompanied by increasing collagen content, vascular collapse, hypoxia, and increased metastatic potential, as reflected by increased α-SMA. In vivo treatment of HA-high tumors with PEGylated recombinant human hyaluronidase (PEGPH20) dramatically reversed these changes and depleted stores of VEGF-A165, suggesting that PEGPH20 may also diminish the angiogenic potential of the TME. Finally, we observed in xenografts and in pancreatic cancer patients a coordinated increase in HA and collagen tumor content.Conclusions: The accumulation of HA in tumors is associated with high tIP, vascular collapse, hypoxia, and drug resistance. These findings may partially explain why more aggressive malignancy is observed in the HA-high phenotype. We have shown that degradation of HA by PEGPH20 partially reverses this phenotype and leads to depletion of tumor-associated VEGF-A165. These results encourage further clinical investigation of PEGPH20. Clin Cancer Res; 24(19); 4798-807. ©2018 AACR.


Assuntos
Carcinogênese/genética , Colágeno/metabolismo , Hialuronoglucosaminidase/administração & dosagem , Neoplasias/terapia , Animais , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Colágeno/genética , Humanos , Ácido Hialurônico/metabolismo , Hialuronoglucosaminidase/química , Hialuronoglucosaminidase/genética , Camundongos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Microambiente Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Oncotarget ; 9(100): 37349-37351, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30647836
4.
Biophys J ; 110(9): 2106-19, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27166818

RESUMO

Elevated interstitial fluid pressure can present a substantial barrier to drug delivery in solid tumors. This is particularly true of pancreatic ductal adenocarcinoma, a highly lethal disease characterized by a robust fibroinflammatory response, widespread vascular collapse, and hypoperfusion that together serve as primary mechanisms of treatment resistance. Free-fluid pressures, however, are relatively low in pancreatic ductal adenocarcinoma and cannot account for the vascular collapse. Indeed, we have shown that the overexpression and deposition in the interstitium of high-molecular-weight hyaluronan (HA) is principally responsible for generating pressures that can reach 100 mmHg through the creation of a large gel-fluid phase. By interrogating a variety of tissues, tumor types, and experimental model systems, we show that an HA-dependent fluid phase contributes substantially to pressures in many solid tumors and has been largely unappreciated heretofore. We investigated the relative contributions of both freely mobile fluid and gel fluid to interstitial fluid pressure by performing simultaneous, real-time fluid-pressure measurements with both the classical wick-in-needle method (to estimate free-fluid pressure) and a piezoelectric pressure catheter transducer (which is capable of capturing pressures associated with either phase). We demonstrate further that systemic treatment with pegylated recombinant hyaluronidase (PEGPH20) depletes interstitial HA and eliminates the gel-fluid phase. This significantly reduces interstitial pressures and leaves primarily free fluid behind, relieving the barrier to drug delivery. These findings argue that quantifying the contributions of free- and gel-fluid phases to hydraulically transmitted pressures in a given cancer will be essential to designing the most appropriate and effective strategies to overcome this important and frequently underestimated resistance mechanism.


Assuntos
Adenocarcinoma/patologia , Líquido Extracelular/metabolismo , Neoplasias Pancreáticas/patologia , Animais , Líquido Extracelular/efeitos dos fármacos , Ácido Hialurônico/farmacologia , Pressão Hidrostática , Camundongos , Células NIH 3T3 , Neoplasias Pancreáticas/metabolismo , Viscosidade
5.
Cancer Immunol Res ; 3(9): 1096-107, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26134178

RESUMO

Bacterial-based therapies are emerging as effective cancer treatments and hold promise for refractory neoplasms, such as pancreatic ductal adenocarcinoma (PDAC), which has not shown significant improvement in therapy for more than 25 years. Using a novel combination of shIDO-ST, a Salmonella-based therapy targeting the immunosuppressive molecule indoleamine 2,3-dioxygenase (IDO), with an enzyme, PEGPH20, which depletes extracellular matrix hyaluronan, we observed extended survival with frequent total regression of autochthonous and orthotopic PDAC tumors. This observation was associated with migration and accumulation of activated polymorphonuclear neutrophils (PMN) from spleens into tumors, which was not seen using a scrambled control (shScr-ST). Purified splenic PMNs from PEGPH20/shIDO-ST-treated mice exhibited significant IDO knockdown and were able to kill tumor targets ex vivo through mechanisms involving FasL and serine proteases. In addition, CD8(+) T cells were observed to contribute to late control of pancreatic tumors. Collectively, our data demonstrate that entry of shIDO-ST and PMNs into otherwise impermeable desmoplastic tumors is facilitated by PEGPH20-mediated HA removal, further highlighting an important component of effective treatment for PDAC.


Assuntos
Vacinas Anticâncer/uso terapêutico , Carcinoma Ductal Pancreático/terapia , Moléculas de Adesão Celular/uso terapêutico , Ácido Hialurônico/deficiência , Hialuronoglucosaminidase/uso terapêutico , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Neoplasias Pancreáticas/terapia , Animais , Linfócitos T CD8-Positivos/imunologia , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Terapia Combinada , Técnicas de Silenciamento de Genes/métodos , Terapia Genética/métodos , Ácido Hialurônico/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Camundongos Endogâmicos C57BL , Terapia de Alvo Molecular/métodos , Transplante de Neoplasias , Neutrófilos/imunologia , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas Recombinantes/uso terapêutico , Neoplasias Pancreáticas
6.
Biomed Res Int ; 2014: 817613, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25147816

RESUMO

Extensive accumulation of the glycosaminoglycan hyaluronan is found in pancreatic cancer. The role of hyaluronan synthases 2 and 3 (HAS2, 3) was investigated in pancreatic cancer growth and the tumor microenvironment. Overexpression of HAS3 increased hyaluronan synthesis in BxPC-3 pancreatic cancer cells. In vivo, overexpression of HAS3 led to faster growing xenograft tumors with abundant extracellular hyaluronan accumulation. Treatment with pegylated human recombinant hyaluronidase (PEGPH20) removed extracellular hyaluronan and dramatically decreased the growth rate of BxPC-3 HAS3 tumors compared to parental tumors. PEGPH20 had a weaker effect on HAS2-overexpressing tumors which grew more slowly and contained both extracellular and intracellular hyaluronan. Accumulation of hyaluronan was associated with loss of plasma membrane E-cadherin and accumulation of cytoplasmic ß-catenin, suggesting disruption of adherens junctions. PEGPH20 decreased the amount of nuclear hypoxia-related proteins and induced translocation of E-cadherin and ß-catenin to the plasma membrane. Translocation of E-cadherin was also seen in tumors from a transgenic mouse model of pancreatic cancer and in a human non-small cell lung cancer sample from a patient treated with PEGPH20. In conclusion, hyaluronan accumulation by HAS3 favors pancreatic cancer growth, at least in part by decreasing epithelial cell adhesion, and PEGPH20 inhibits these changes and suppresses tumor growth.


Assuntos
Glucuronosiltransferase/metabolismo , Ácido Hialurônico/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Microambiente Tumoral/fisiologia , Animais , Caderinas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Adesão Celular/fisiologia , Linhagem Celular Tumoral , Humanos , Hialuronan Sintases , Hialuronoglucosaminidase/metabolismo , Camundongos , beta Catenina/metabolismo
8.
J Immunol ; 192(11): 5285-95, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24778442

RESUMO

Hyaluronidase (Hyal) and low m.w. hyaluronan (LMW HA) fragments have been widely reported to stimulate the innate immune response. However, most hyaluronidases used were purified from animal tissues (e.g., bovine testis Hyal [BTH]), and contain endotoxin and other unrelated proteins. We tested a highly purified recombinant human Hyal (rHuPH20) and endotoxin-free HA fragments from M(r) 5,000 to 1,500,000 in the rodent air pouch model of inflammation to determine their potential for stimulation of the innate immune response. Exogenous LMW HA fragments (average M(r) 200,000) failed to induce either cytokine/chemokine production or neutrophil infiltration into the air pouch. Challenging the air pouch with LPS or BTH stimulated production of cytokines and chemokines but rHuPH20 did not, suggesting that neither PH20 nor generation of LMW HA fragments in situ stimulates cytokine and chemokine production. LPS and BTH also induced neutrophil infiltration into the air pouch, which was not observed with rHuPH20 treatment. Endotoxin-depleted BTH had much reduced proinflammatory activity, suggesting that the difference in inflammatory responses between rHuPH20 and BTH is likely due to endotoxin contaminants in BTH. When rHuPH20 was dosed with LPS, the induction of cytokines and chemokines was the same as LPS alone, but neutrophil infiltration was inhibited, likely by interrupting HA-CD44 interaction. Our results indicate that neither rHuPH20 nor its directly generated HA catabolites have inflammatory properties in the air pouch model, and rHuPH20 can instead inhibit some aspects of inflammation, such as neutrophil infiltration into the air pouch.


Assuntos
Antígenos de Neoplasias/farmacologia , Histona Acetiltransferases/farmacologia , Ácido Hialurônico/imunologia , Hialuronoglucosaminidase/farmacologia , Lipopolissacarídeos/toxicidade , Infiltração de Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Doença Aguda , Animais , Antígenos de Neoplasias/imunologia , Bovinos , Linhagem Celular , Citocinas/imunologia , Histona Acetiltransferases/imunologia , Humanos , Hialuronoglucosaminidase/imunologia , Inflamação/induzido quimicamente , Inflamação/imunologia , Inflamação/patologia , Masculino , Camundongos , Infiltração de Neutrófilos/imunologia , Neutrófilos/patologia , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/farmacologia
9.
Diabetes ; 62(6): 1888-96, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23349492

RESUMO

Increased deposition of specific extracellular matrix (ECM) components is a characteristic of insulin-resistant skeletal muscle. Hyaluronan (HA) is a major constituent of the ECM. The hypotheses that 1) HA content is increased in the ECM of insulin-resistant skeletal muscle and 2) reduction of HA in the muscle ECM by long-acting pegylated human recombinant PH20 hyaluronidase (PEGPH20) reverses high-fat (HF) diet-induced muscle insulin resistance were tested. We show that muscle HA was increased in HF diet-induced obese (DIO) mice and that treatment of PEGPH20, which dose-dependently reduced HA in muscle ECM, decreased fat mass, adipocyte size, and hepatic and muscle insulin resistance in DIO mice at 10 mg/kg. Reduced muscle insulin resistance was associated with increased insulin signaling, muscle vascularization, and percent cardiac output to muscle rather than insulin sensitization of muscle per se. Dose-response studies revealed that PEGPH20 dose-dependently increased insulin sensitivity in DIO mice with a minimally effective dose of 0.01 mg/kg. PEGPH20 at doses of 0.1 and 1 mg/kg reduced muscle HA to levels seen in chow-fed mice, decreased fat mass, and increased muscle glucose uptake. These findings suggest that ECM HA is a target for treatment of insulin resistance.


Assuntos
Moléculas de Adesão Celular/uso terapêutico , Dieta Hiperlipídica/efeitos adversos , Ácido Hialurônico/metabolismo , Hialuronoglucosaminidase/uso terapêutico , Resistência à Insulina/fisiologia , Obesidade/metabolismo , Animais , Immunoblotting , Imuno-Histoquímica , Imunoprecipitação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Obesidade/tratamento farmacológico , Obesidade/etiologia
10.
Gut ; 62(1): 112-20, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22466618

RESUMO

OBJECTIVE: Pancreatic ductal adenocarcinoma (PDA) is characterised by stromal desmoplasia and vascular dysfunction, which critically impair drug delivery. This study examines the role of an abundant extracellular matrix component, the megadalton glycosaminoglycan hyaluronan (HA), as a novel therapeutic target in PDA. METHODS: Using a genetically engineered mouse model of PDA, the authors enzymatically depleted HA by a clinically formulated PEGylated human recombinant PH20 hyaluronidase (PEGPH20) and examined tumour perfusion, vascular permeability and drug delivery. The preclinical utility of PEGPH20 in combination with gemcitabine was assessed by short-term and survival studies. RESULTS: PEGPH20 rapidly and sustainably depleted HA, inducing the re-expansion of PDA blood vessels and increasing the intratumoral delivery of two chemotherapeutic agents, doxorubicin and gemcitabine. Moreover, PEGPH20 triggered fenestrations and interendothelial junctional gaps in PDA tumour endothelia and promoted a tumour-specific increase in macromolecular permeability. Finally, combination therapy with PEGPH20 and gemcitabine led to inhibition of PDA tumour growth and prolonged survival over gemcitabine monotherapy, suggesting immediate clinical utility. CONCLUSIONS: The authors demonstrate that HA impedes the intratumoral vasculature in PDA and propose that its enzymatic depletion be explored as a means to improve drug delivery and response in patients with pancreatic cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais/fisiologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Resistencia a Medicamentos Antineoplásicos/fisiologia , Ácido Hialurônico/fisiologia , Neoplasias Pancreáticas/tratamento farmacológico , Animais , Antineoplásicos/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Ductal Pancreático/irrigação sanguínea , Carcinoma Ductal Pancreático/mortalidade , Carcinoma Ductal Pancreático/fisiopatologia , Moléculas de Adesão Celular/administração & dosagem , Moléculas de Adesão Celular/farmacologia , Desoxicitidina/administração & dosagem , Desoxicitidina/análogos & derivados , Doxorrubicina/administração & dosagem , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Hialuronoglucosaminidase/administração & dosagem , Hialuronoglucosaminidase/farmacologia , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Camundongos , Camundongos Transgênicos , Neoplasias Pancreáticas/irrigação sanguínea , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/fisiopatologia , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/farmacologia , Análise Serial de Tecidos , Resultado do Tratamento , Gencitabina
11.
Anticancer Res ; 32(4): 1203-12, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22493350

RESUMO

BACKGROUND: The tumor microenvironment is an emerging source of novel therapeutic targets in cancer. The glycosaminoglycan hyaluronan (HA) accumulates in 20-30% of tumors and is often associated with poor prognosis. MATERIALS AND METHODS: We developed a digitized, semiquantitative scoring system for tumor-associated HA content, then grouped tumors (from animal models or patients) according to the degree of HA accumulation (HA+1,2,3). The antitumor response to HA-depletion by pegylated PH20 hyaluronidase (PEGPH20) was then characterized as a function of HA accumulation. RESULTS: Semiquantitative grouping of tumors demonstrated that HA accumulation predicts the response of tumors in animal models to PEGPH20. Prospective analysis of HA content was used to predict response to PEGPH20 of squamous cell-type explants from patients with non-small cell lung cancer in nude mice. CONCLUSION: Measurement of HA is a viable biomarker approach for predicting antitumor response in animal models to the HA-depleting agent, PEGPH20.


Assuntos
Neoplasias Experimentais/terapia , Microambiente Tumoral , Animais , Sequência de Bases , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Primers do DNA , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Camundongos , Camundongos Nus , Neoplasias Experimentais/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Cancers (Basel) ; 4(3): 873-903, 2012 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-24213471

RESUMO

The tumor stroma, consisting of non-malignant cells and the extracellular matrix, undergoes significant quantitative and qualitative changes throughout malignant transformation and tumor progression. With increasing recognition of the role of the tumor microenvironment in disease progression, stromal components of the tumor have become attractive targets for therapeutic intervention. Stromal accumulation of the glycosaminoglycan hyaluronan occurs in many tumor types and is frequently associated with a negative disease prognosis. Hyaluronan interacts with other extracellular molecules as well as cellular receptors to form a complex interaction network influencing physicochemical properties, signal transduction, and biological behavior of cancer cells. In preclinical animal models, enzymatic removal of hyaluronan is associated with remodeling of the tumor stroma, reduction of tumor interstitial fluid pressure, expansion of tumor blood vessels and facilitated delivery of chemotherapy. This leads to inhibition of tumor growth and increased survival. Current evidence shows that abnormal accumulation of hyaluronan may be an important stromal target for cancer therapy. In this review we highlight the role of hyaluronan and hyaluronan-mediated interactions in cancer, and discuss historical and recent data on hyaluronidase-based therapies and the effect of hyaluronan removal on tumor growth.

13.
Mol Cancer Ther ; 9(11): 3052-64, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20978165

RESUMO

Hyaluronan (HA) is a glycosaminoglycan polymer that often accumulates in malignancy. Megadalton complexes of HA with proteoglycans create a hydrated connective tissue matrix, which may play an important role in tumor stroma formation. Through its colloid osmotic effects, HA complexes contribute to tumor interstitial fluid pressure, limiting the effect of therapeutic molecules on malignant cells. The therapeutic potential of enzymatic remodeling of the tumor microenvironment through HA depletion was initially investigated using a recombinant human HA-degrading enzyme, rHuPH20, which removed HA-dependent tumor cell extracellular matrices in vitro. However, rHuPH20 showed a short serum half-life (t(1/2) < 3 minutes), making depletion of tumor HA in vivo impractical. A pegylated variant of rHuPH20, PEGPH20, was therefore evaluated. Pegylation improved serum half-life (t(1/2) = 10.3 hours), making it feasible to probe the effects of sustained HA depletion on tumor physiology. In high-HA prostate PC3 tumors, i.v. administration of PEGPH20 depleted tumor HA, decreased tumor interstitial fluid pressure by 84%, decreased water content by 7%, decompressed tumor vessels, and increased tumor vascular area >3-fold. Following repeat PEGPH20 administration, tumor growth was significantly inhibited (tumor growth inhibition, 70%). Furthermore, PEGPH20 enhanced both docetaxel and liposomal doxorubicin activity in PC3 tumors (P < 0.05) but did not significantly improve the activity of docetaxel in low-HA prostate DU145 tumors. The ability of PEGPH20 to enhance chemotherapy efficacy is likely due to increased drug perfusion combined with other tumor structural changes. These results support enzymatic remodeling of the tumor stroma with PEGPH20 to treat tumors characterized by the accumulation of HA.


Assuntos
Antineoplásicos/uso terapêutico , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/farmacologia , Ácido Hialurônico/metabolismo , Hialuronoglucosaminidase/metabolismo , Hialuronoglucosaminidase/farmacologia , Animais , Antineoplásicos/administração & dosagem , Células CHO , Moléculas de Adesão Celular/administração & dosagem , Moléculas de Adesão Celular/farmacocinética , Cricetinae , Cricetulus , Sinergismo Farmacológico , Humanos , Hialuronoglucosaminidase/administração & dosagem , Hialuronoglucosaminidase/farmacocinética , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Nus , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/farmacocinética , Polietilenoglicóis/farmacologia , Ratos , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacocinética , Proteínas Recombinantes/farmacologia , Células Tumorais Cultivadas , Regulação para Cima/genética , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Am J Physiol Renal Physiol ; 282(6): F967-74, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11997312

RESUMO

Maintaining extracellular fluid (ECF) K(+) concentration ([K(+)]) within a narrow range is accomplished by the concerted responses of the kidney, which matches K(+) excretion to K(+) intake, and skeletal muscle, the main intracellular fluid (ICF) store of K(+), which can rapidly buffer ECF [K(+)]. In both systems, homologous P-type ATPase isoforms are key effectors of this homeostasis. During dietary K(+) deprivation, these P-type ATPases are regulated in opposite directions: increased abundance of the H,K-ATPase "colonic" isoform in the renal collecting duct drives active K(+) conservation while decreased abundance of the plasma membrane Na,K-ATPase alpha(2)-isoform leads to the specific shift of K(+) from muscle ICF to ECF. The skeletal muscle response is isoform and muscle specific: alpha(2) and beta(2), not alpha(1) and beta(1), levels are depressed, and fast glycolytic muscles lose >90% alpha(2), whereas slow oxidative muscles lose ~50%; however, both muscle types have the same fall in cellular [K(+)]. To understand the physiological impact, we developed the "K(+) clamp" to assess insulin-stimulated cellular K(+) uptake in vivo in the conscious rat by measuring the exogenous K(+) infusion rate needed to maintain constant plasma [K(+)] during insulin infusion. Using the K(+) clamp, we established that K(+) deprivation leads to near-complete insulin resistance of cellular K(+) uptake and that this insulin resistance can occur before any decrease in plasma [K(+)] or muscle Na(+) pump expression. These studies establish the advantage of combining molecular analyses of P-type ATPase expression with in vivo analyses of cellular K(+) uptake and excretion to determine mechanisms in models of disrupted K(+) homeostasis.


Assuntos
Espaço Extracelular/metabolismo , Músculo Esquelético/metabolismo , Potássio/metabolismo , Animais , Análise Química do Sangue/métodos , Humanos , Rim/fisiologia , ATPase Trocadora de Sódio-Potássio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...