Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(29): e2404958121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38985767

RESUMO

Hydrogen production through water splitting is a vital strategy for renewable and sustainable clean energy. In this study, we developed an approach integrating nanomaterial engineering and synthetic biology to establish a bionanoreactor system for efficient hydrogen production. The periplasmic space (20 to 30 nm) of an electroactive bacterium, Shewanella oneidensis MR-1, was engineered to serve as a bionanoreactor to enhance the interaction between electrons and protons, catalyzed by hydrogenases for hydrogen generation. To optimize electron transfer, we used the microbially reduced graphene oxide (rGO) to coat the electrode, which improved the electron transfer from the electrode to the cells. Native MtrCAB protein complex on S. oneidensis and self-assembled iron sulfide (FeS) nanoparticles acted in tandem to facilitate electron transfer from an electrode to the periplasm. To enhance proton transport, S. oneidensis MR-1 was engineered to express Gloeobacter rhodopsin (GR) and the light-harvesting antenna canthaxanthin. This led to efficient proton pumping when exposed to light, resulting in a 35.6% increase in the rate of hydrogen production. The overexpression of native [FeFe]-hydrogenase further improved the hydrogen production rate by 56.8%. The bionanoreactor engineered in S. oneidensis MR-1 achieved a hydrogen yield of 80.4 µmol/mg protein/day with a Faraday efficiency of 80% at a potential of -0.75 V. This periplasmic bionanoreactor combines the strengths of both nanomaterial and biological components, providing an efficient approach for microbial electrosynthesis.


Assuntos
Grafite , Hidrogênio , Shewanella , Hidrogênio/metabolismo , Shewanella/metabolismo , Shewanella/genética , Grafite/metabolismo , Hidrogenase/metabolismo , Hidrogenase/genética , Transporte de Elétrons , Reatores Biológicos , Biologia Sintética/métodos , Eletrodos , Rodopsinas Microbianas/metabolismo , Rodopsinas Microbianas/genética , Periplasma/metabolismo , Fontes de Energia Bioelétrica/microbiologia
2.
Environ Pollut ; 355: 124018, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38697252

RESUMO

Fe and N co-doped walnut shell biochar (Fe,N-BC) was prepared through a one-pot pyrolysis procedure by using walnut shells as feedstocks, melamine as the N source, and iron (III) chloride as the Fe source. Moreover, pristine biochar (BC), nitrogen-doped biochar (N-BC), and α-Fe2O3-BC were synthesized as controls. All the prepared materials were characterized by different techniques and were used for the activation of peroxymonosulfate (PMS) for the degradation of sulfamethoxazole (SMX). A very high degradation rate for SMX (10 mg/L) was achieved with Fe,N-BC/PMS (0.5 min-1), which was higher than those for BC/PMS (0.026 min-1), N-BC/PMS (0.038 min-1), and α-Fe2O3-BC/PMS (0.33 min-1) under the same conditions. This is mainly due to the formation of Fe3C and iron oxides, which are very reactive for the activation of PMS. In the next step, Fe,N-BC was employed for the formation of a composite membrane structure by a liquid-induced phase inversion process. The synthesized ultrafiltration membrane not only exhibited high separation performance for humic acid sodium salt (HA, 98%) but also exhibited improved self-cleaning properties when applied for rhodamine B (RhB) filtration combined with a PMS solution cleaning procedure. Scavenging experiments revealed that 1O2 was the predominant species responsible for the degradation of SMX. The transformation products of SMX and possible degradation pathways were also identified. Furthermore, the toxicity assessment revealed that the overall toxicity of the intermediate was lower than that of SMX.


Assuntos
Carvão Vegetal , Juglans , Peróxidos , Sulfametoxazol , Juglans/química , Sulfametoxazol/química , Carvão Vegetal/química , Peróxidos/química , Ferro/química , Nitrogênio/química , Poluentes Químicos da Água/química
3.
Nat Commun ; 14(1): 8012, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049399

RESUMO

Microbial rhodopsin, a significant contributor to sustaining life through light harvesting, holds untapped potential for carbon fixation. Here, we construct an artificial photosynthesis system which combines the proton-pumping ability of rhodopsin with an extracellular electron uptake mechanism, establishing a pathway to drive photoelectrosynthetic CO2 fixation by Ralstonia eutropha (also known as Cupriavidus necator) H16, a facultatively chemolithoautotrophic soil bacterium. R. eutropha is engineered to heterologously express an extracellular electron transfer pathway of Shewanella oneidensis MR-1 and Gloeobacter rhodopsin (GR). Employing GR and the outer-membrane conduit MtrCAB from S. oneidensis, extracellular electrons and GR-driven proton motive force are integrated into R. eutropha's native electron transport chain (ETC). Inspired by natural photosynthesis, the photoelectrochemical system splits water to supply electrons to R. eutropha via the Mtr outer-membrane route. The light-activated proton pump - GR, supported by canthaxanthin as an antenna, powers ATP synthesis and reverses the ETC to regenerate NADH/NADPH, facilitating R. eutropha's biomass synthesis from CO2. Overexpression of a carbonic anhydrase further enhances CO2 fixation. This artificial photosynthesis system has the potential to advance the development of efficient photosynthesis, redefining our understanding of the ecological role of microbial rhodopsins in nature.


Assuntos
Dióxido de Carbono , Cianobactérias , Dióxido de Carbono/metabolismo , Rodopsina/genética , Rodopsina/metabolismo , Fotossíntese/genética , Cianobactérias/genética , Cianobactérias/metabolismo
4.
ACS Synth Biol ; 11(11): 3805-3816, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36264158

RESUMO

A key goal of synthetic biology is to engineer organisms that can use solar energy to convert CO2 to biomass, chemicals, and fuels. We engineered a light-dependent electron transfer chain by integrating rhodopsin and an electron donor to form a closed redox loop, which drives rhodopsin-dependent CO2 fixation. A light-driven proton pump comprising Gloeobacter rhodopsin (GR) and its cofactor retinal have been assembled in Ralstonia eutropha (Cupriavidus necator) H16. In the presence of light, this strain fixed inorganic carbon (or bicarbonate) leading to 20% growth enhancement, when formate was used as an electron donor. We found that an electrode from a solar panel can replace organic compounds to serve as the electron donor, mediated by the electron shuttle molecule riboflavin. In this new autotrophic and photo-electrosynthetic system, GR is augmented by an external photocell for reductive CO2 fixation. We demonstrated that this hybrid photo-electrosynthetic pathway can drive the engineered R. eutropha strain to grow using CO2 as the sole carbon source. In this system, a bioreactor with only two inputs, light and CO2, enables the R. eutropha strain to perform a rhodopsin-dependent autotrophic growth. Light energy alone, supplied by a solar panel, can drive the conversion of CO2 into biomass with a maximum electron transfer efficiency of 20%.


Assuntos
Cupriavidus necator , Rodopsina , Rodopsina/genética , Rodopsina/metabolismo , Dióxido de Carbono/metabolismo , Cupriavidus necator/genética , Cupriavidus necator/metabolismo , Processos Autotróficos , Carbono/metabolismo
5.
ACS Synth Biol ; 10(10): 2566-2578, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34551261

RESUMO

Nitric oxide (NO) is an important disease biomarker found in many chronic inflammatory diseases and cancers. A well-characterized nitric sensing system is useful to aid the rapid development of bacteria therapy and synthetic biology. In this work, we engineered a set of NO-responsive biosensors based on the PnorV promoter and its NorR regulator in the norRVW operon; the circuits were characterized and optimized in probiotic Escherichia coli Nissle 1917 and mini SimCells (minicells containing designed gene circuits for specific tasks). Interestingly, the expression level of NorR displayed an inverse correlation to the PnorV promoter activation, as a strong expression of the NorR regulator resulted in a low amplitude of NO-inducible gene expression. This could be explained by a competitive binding mechanism where the activated and inactivated NorR competitively bind to the same site on the PnorV promoter. To overcome such issues, the NO induction performance was further improved by making a positive feedback loop that fine-tuned the level of NorR. In addition, by examining two integration host factor (IHF) binding sites of the PnorV promoter, we demonstrated that the deletion of the second IHF site increased the maximum signal output by 25% (500 µM DETA/NO) with no notable increase in the basal expression level. The optimized NO-sensing gene circuit in anucleate mini SimCells exhibited increased robustness against external fluctuation in medium composition. The NO detection limit of the optimized gene circuit pPnorVß was also improved from 25.6 to 1.3 nM in mini SimCells. Moreover, lyophilized mini SimCells can maintain function for over 2 months. Hence, SimCell-based NO biosensors could be used as safe sensor chassis for synthetic biology.


Assuntos
Técnicas Biossensoriais/instrumentação , Escherichia coli/genética , Óxido Nítrico/análise , Biologia Sintética/métodos , Ligação Competitiva , Proteínas de Escherichia coli/genética , Redes Reguladoras de Genes , Regiões Promotoras Genéticas , Transativadores/genética
6.
Microb Biotechnol ; 14(4): 1580-1593, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33993638

RESUMO

The ability to directly modify native and established biofilms has enormous potential in understanding microbial ecology and application of biofilm in 'real-world' systems. However, efficient genetic transformation of established biofilms at any scale remains challenging. In this study, we applied an ultrasound-mediated DNA delivery (UDD) technique to introduce plasmid to established non-competent biofilms in situ. Two different plasmids containing genes coding for superfolder green fluorescent protein (sfGFP) and the flavin synthesis pathway were introduced into established bacterial biofilms in microfluidic flow (transformation efficiency of 3.9 ± 0.3 × 10-7 cells in biofilm) and microbial fuel cells (MFCs), respectively, both employing UDD. Gene expression and functional effects of genetically modified bacterial biofilms were observed, where some cells in UDD-treated Pseudomonas putida UWC1 biofilms expressed sfGFP in flow cells and UDD-treated Shewanella oneidensis MR-1 biofilms generated significantly (P < 0.05) greater (61%) bioelectricity production (21.9 ± 1.2 µA cm-2 ) in MFC than a wild-type control group (~ 13.6 ± 1.6 µA cm-2 ). The effects of UDD were amplified in subsequent growth under selection pressure due to antibiotic resistance and metabolism enhancement. UDD-induced gene transfer on biofilms grown in both microbial flow cells and MFC systems was successfully demonstrated, with working volumes of 0.16 cm3 and 300 cm3 , respectively, demonstrating a significant scale-up in operating volume. This is the first study to report on a potentially scalable direct genetic engineering method for established non-competent biofilms, which can be exploited in enhancing their capability towards environmental, industrial and medical applications.


Assuntos
Fontes de Energia Bioelétrica , Shewanella , Biofilmes , DNA , Engenharia Genética , Shewanella/genética
7.
Biotechnol Adv ; 46: 107680, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33338579

RESUMO

Biological wax esters offer a sustainable, renewable and biodegradable alternative to many fossil fuel derived chemicals including plastics and paraffins. Many species of bacteria accumulate waxes with similar structure and properties to highly desirable animal and plant waxes such as Spermaceti and Jojoba oils, the use of which is limited by resource requirements, high cost and ethical concerns. While bacterial fermentations overcome these issues, a commercially viable bacterial wax production process would require high yields and renewable, affordable feedstock to make it economically competitive and environmentally beneficial. This review describes recent progress in wax ester generation in both wild type and genetically engineered bacteria, with a focus on comparing substrates and quantifying obtained waxes. The full breadth of wax accumulating species is discussed, with emphasis on species generating high yields and utilising renewable substrates. Key areas of the field that have, thus far, received limited attention are highlighted, such as waste stream valorisation, mixed microbial cultures and efficient wax extraction, as, until effectively addressed, these will slow progress in creating commercially viable wax production methods.


Assuntos
Ésteres , Ceras , Bactérias/genética , Engenharia Genética , Óleos de Plantas
8.
Microb Biotechnol ; 13(6): 1904-1916, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32729223

RESUMO

Electrochemically active biofilms are capable of exchanging electrons with solid electron acceptors and have many energy and environmental applications such as bioelectricity generation and environmental remediation. The performance of electrochemically active biofilms is usually dependent on c-type cytochromes, while biofilm development is controlled by a signal cascade mediated by the intracellular secondary messenger bis-(3'-5') cyclic dimeric guanosine monophosphate (c-di-GMP). However, it is unclear whether there are any links between the c-di-GMP regulatory system and the expression of c-type cytochromes. In this study, we constructed a S. oneidensis MR-1 strain with a higher cytoplasmic c-di-GMP level by constitutively expressing a c-di-GMP synthase and it exhibited expected c-di-GMP-influenced traits, such as lowered motility and increased biofilm formation. Compared to MR-1 wild-type strain, the high c-di-GMP strain had a higher Fe(III) reduction rate (21.58 vs 11.88 pM of Fe(III)/h cell) and greater expression of genes that code for the proteins involved in the Mtr pathway, including CymA, MtrA, MtrB, MtrC and OmcA. Furthermore, single-cell Raman microspectroscopy (SCRM) revealed a great increase of c-type cytochromes in the high c-di-GMP strain as compared to MR-1 wild-type strain. Our results reveal for the first time that the c-di-GMP regulation system indirectly or directly positively regulates the expression of cytochromes involved in the extracellular electron transport (EET) in S. oneidensis, which would help to understand the regulatory mechanism of c-di-GMP on electricity production in bacteria.


Assuntos
Compostos Férricos , Shewanella , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , GMP Cíclico/análogos & derivados , Citocromos/genética , Compostos Férricos/metabolismo , Regulação Bacteriana da Expressão Gênica , Shewanella/genética , Shewanella/metabolismo
9.
Proc Natl Acad Sci U S A ; 117(12): 6752-6761, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32144140

RESUMO

A type of chromosome-free cell called SimCells (simple cells) has been generated from Escherichia coli, Pseudomonas putida, and Ralstonia eutropha. The removal of the native chromosomes of these bacteria was achieved by double-stranded breaks made by heterologous I-CeuI endonuclease and the degradation activity of endogenous nucleases. We have shown that the cellular machinery remained functional in these chromosome-free SimCells and was able to process various genetic circuits. This includes the glycolysis pathway (composed of 10 genes) and inducible genetic circuits. It was found that the glycolysis pathway significantly extended longevity of SimCells due to its ability to regenerate ATP and NADH/NADPH. The SimCells were able to continuously express synthetic genetic circuits for 10 d after chromosome removal. As a proof of principle, we demonstrated that SimCells can be used as a safe agent (as they cannot replicate) for bacterial therapy. SimCells were used to synthesize catechol (a potent anticancer drug) from salicylic acid to inhibit lung, brain, and soft-tissue cancer cells. SimCells represent a simplified synthetic biology chassis that can be programmed to manufacture and deliver products safely without interference from the host genome.


Assuntos
Antineoplásicos/farmacologia , Catecóis/farmacologia , Reprogramação Celular , Cupriavidus necator/genética , Escherichia coli/genética , Pseudomonas putida/genética , Biologia Sintética/métodos , Proliferação de Células , Cromossomos Bacterianos , Cupriavidus necator/metabolismo , Sistemas de Liberação de Medicamentos , Escherichia coli/metabolismo , Redes Reguladoras de Genes , Engenharia Genética , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Pseudomonas putida/metabolismo , Células Tumorais Cultivadas
10.
Bioresour Technol ; 297: 122262, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31711909

RESUMO

In this work, five Crassulacean Acid Metabolism (CAM) species from the five different genera (Agave, Ananas, Euphorbia, Kalanchoe, and Opuntia) were selected as alternative feedstocks and their biochemical methane potentials (BMP) were investigated. Batch assays were performed using sludge and rumen fluid as inocula under uncontrolled pH and at mesophilic temperature (39 °C). Mean methane yields from the CAM plants inoculated with AD sludge ranged from 281 to 382 ml/gVS. These values were not significantly different from the methane yield obtained from maize, a feedstock for biomethane and volatile fatty acid (VFA), suggesting that CAM plants may be viable as bioenergy crops on poor-quality soils in areas with low rainfall that are unsuitable for cultivation of food crops.


Assuntos
Agave , Esgotos , Anaerobiose , Animais , Reatores Biológicos , Ácidos Graxos Voláteis , Metano
11.
Appl Environ Microbiol ; 85(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30658983

RESUMO

A simple aspirin-inducible system has been developed and characterized in Escherichia coli by employing the Psal promoter and SalR regulation system originally from Acinetobacter baylyi ADP1. Mutagenesis at the DNA binding domain (DBD) and chemical recognition domain (CRD) of the SalR protein in A. baylyi ADP1 suggests that the effector-free form, SalRr, can compete with the effector-bound form, SalRa, binding the Psal promoter and repressing gene transcription. The induction of the Psal promoter was compared in two different gene circuit designs: a simple regulation system (SRS) and positive autoregulation (PAR). Both regulatory circuits were induced in a dose-dependent manner in the presence of 0.05 to 10 µM aspirin. Overexpression of SalR in the SRS circuit reduced both baseline leakiness and the strength of the Psal promoter. The PAR circuit forms a positive feedback loop that fine-tunes the level of SalR. A mathematical simulation based on the SalRr/SalRa competitive binding model not only fit the observed experimental results in SRS and PAR circuits but also predicted the performance of a new gene circuit design for which weak expression of SalR in the SRS circuit should significantly improve induction strength. The experimental result is in good agreement with this prediction, validating the SalRr/SalRa competitive binding model. The aspirin-inducible systems were also functional in probiotic strain E. coli Nissle 1917 and SimCells produced from E. coli MC1000 ΔminD These well-characterized and modularized aspirin-inducible gene circuits would be useful biobricks for synthetic biology.IMPORTANCE An aspirin-inducible SalR/Psal regulation system, originally from Acinetobacter baylyi ADP1, has been designed for E. coli strains. SalR is a typical LysR-type transcriptional regulator (LTTR) family protein and activates the Psal promoter in the presence of aspirin or salicylate in the range of 0.05 to 10 µM. The experimental results and mathematical simulations support the competitive binding model of the SalR/Psal regulation system in which SalRr competes with SalRa to bind the Psal promoter and affect gene transcription. The competitive binding model successfully predicted that weak SalR expression would significantly improve the inducible strength of the SalR/Psal regulation system, which is confirmed by the experimental results. This provides an important mechanism model to fine-tune transcriptional regulation of the LTTR family, which is the largest family of transcriptional regulators in the prokaryotic kingdom. In addition, the SalR/Psal regulation system was also functional in probiotic strain E. coli Nissle 1917 and minicell-derived SimCells, which would be a useful biobrick for environmental and medical applications.


Assuntos
Aspirina/metabolismo , Técnicas Biossensoriais/métodos , Escherichia coli/metabolismo , Acinetobacter/genética , Acinetobacter/metabolismo , Técnicas Biossensoriais/instrumentação , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes , Regiões Promotoras Genéticas , Salicilatos/metabolismo
12.
Environ Microbiol ; 20(6): 2241-2255, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29727057

RESUMO

It is of great significance to understand CO2 fixation in the oceans. Using single cell Raman spectra (SCRS) as biochemical profiles, Raman activated cell ejection (RACE) was able to link phenotypes and genotypes of cells. Here, we show that mini-metagenomic sequences from RACE can be used as a reference to reconstruct nearly complete genomes of key functional bacteria by binning shotgun metagenomic sequencing data. By applying this approach to 13 C bicarbonate spiked seawater from euphotic zone of the Yellow Sea of China, the dominant bacteria Synechococcus spp. and Pelagibacter spp. were revealed and both of them contain carotenoid and were able to incorporate 13 C into the cells at the same time. Genetic analysis of the reconstructed genomes suggests that both Synechococcus spp. and Pelagibacter spp. contained all genes necessary for carotenoid synthesis, light energy harvesting and CO2 fixation. Interestingly, the reconstructed genome indicates that Pelagibacter spp. harbored intact sets of genes for ß-carotene (precursor of retional), proteorhodopsin synthesis and anaplerotic CO2 fixation. This novel approach shines light on the role of marine 'microbial dark matter' in global carbon cycling, by linking yet-to-be-cultured Synechococcus spp. and Pelagibacter spp. to carbon fixation and flow activities in situ.


Assuntos
Bactérias/metabolismo , Ciclo do Carbono/fisiologia , Metagenômica , Oceanos e Mares , Análise de Célula Única/métodos , Bactérias/genética , Filogenia , Água do Mar/microbiologia , Microbiologia da Água
13.
Sci Rep ; 7(1): 16648, 2017 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-29192181

RESUMO

The emergence and widespread distribution of antimicrobial resistant (AMR) bacteria has led to an increasing concern with respect to potential environmental and public health risks. Culture-independent and rapid identification of AMR bacteria in-situ in complex environments is important in understanding the role of viable but non-culturable and antibiotic persistent bacteria and in revealing potential pathogens without waiting for colony formation. In this study, a culture-independent and non-destructive phenotyping approach, so called Raman Deuterium Stable Isotope Probing (Raman-DIP), was developed to identify AMR bacteria in the River Thames. It is demonstrated that Raman-DIP was able to accurately identify resistant and susceptible bacteria within 24 hours. The work shows that, in the River Thames, the majority of the bacteria (76 ± 2%) were metabolically active, whilst AMR bacteria to carbenicillin, kanamycin and both two antibiotics were 35 ± 5%, 28 ± 3%, 25 ± 1% of the total bacterial population respectively. Raman activated cell ejection (RACE) was applied to isolate single AMR bacteria for the first time, linking AMR phenotype (reistance to antibiotics) and genotype (DNA sequence). The sequences of the RACE sorted cells indicate that they were potential human pathogens Aeromonas sp., Stenotrophomonas sp. and an unculturable bacterium. This work demonstrates Raman-DIP and RACE are effective culture-independent approach for rapid identification of AMR bacteria at the single cell level in their natural conditions.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Deutério , Farmacorresistência Bacteriana , Traçadores Radioativos , Análise Espectral Raman , Microbiologia da Água , Deutério/química , Humanos , Testes de Sensibilidade Microbiana , Rios
14.
Sci Rep ; 7(1): 7261, 2017 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-28775370

RESUMO

This work serves as a proof-of-concept for bacterially derived SimCells (Simple Cells), which contain the cell machinery from bacteria and designed DNA (or potentially a simplified genome) to instruct the cell to carry out novel, specific tasks. SimCells represent a reprogrammable chassis without a native chromosome, which can host designed DNA to perform defined functions. In this paper, the use of Escherichia coli MC1000 ∆minD minicells as a non-reproducing chassis for SimCells was explored, as demonstrated by their ability to act as sensitive biosensors for small molecules. Highly purified minicells derived from E. coli strains containing gene circuits for biosensing were able to transduce the input signals from several small molecules (glucarate, acrylate and arabinose) into the production of green fluorescent protein (GFP). A mathematical model was developed to fit the experimental data for induction of gene expression in SimCells. The intracellular ATP level was shown to be important for SimCell function. A purification and storage protocol was developed to prepare SimCells which could retain their functions for an extended period of time. This study demonstrates that SimCells are able to perform as 'smart bioparticles' controlled by designed gene circuits.

15.
Environ Sci Technol ; 51(10): 5695-5702, 2017 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-28426217

RESUMO

Metalworking fluids (MWFs) are used as lubricants and coolants in the manufacturing operations. Their biodeterioration, while in operation, is a widespread problem leading to poor performance and worker health issues. Adding biocides, though effective in reducing microbial growth, leads to the production of more recalcitrant wastewaters that are difficult to dispose or recycle on-site. Increasing environmental concerns have led to robust legislation for reducing/eliminating the use of toxic biocides in MWFs, stimulating a growing interest in the development/application of alternative biological preservation strategies. In this study, inducing nutrient imbalance was investigated for controlling microbial growth in MWFs. Phosphorus was immobilized employing insoluble La2O3 to form LaPO4. Concentrations of La2O3 greater than 0.08%w (%w = weight percent) completely inhibited microbial growth (from 1.4 × 107 to 0 CFU/mL) and hindered biodegradation. Raman spectroscopy suggested that La2O3 converted intracellular phosphorus into LaPO4. The growth inhibition potentials of both 0.06%w La(NO3)3 and La2O3 were found to be superior to formaldehyde. The antimicrobial property of La2O3 (i.e., inhibition) was tenable by adding sufficient phosphate, acting as an on/off switch for controlling microbial growth in MWFs. This technology offers the potential to reduce/eliminate the use of biocides in MWFs, improves the feasibility of end-of-life biological treatment, and closes the water loop.


Assuntos
Desinfetantes , Metalurgia , Fósforo , Biodegradação Ambiental , Lubrificantes
16.
J R Soc Interface ; 14(126)2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28077760

RESUMO

Nanoparticulate delivery of biocides has the potential to decrease levels of exposure to non-target organisms, and miminize long-term exposure that can promote the development of resistance. Silica nanoparticles are an ideal vehicle since they are inert, biocompatible, biodegradable, and thermally and chemically stable. Encapsulation of biocides within nanoparticulates can improve their stability and longevity and maximize the biocidal potential of hydrophobic volatile compounds. Herein, we have shown that the plant secondary metabolites allyl isothiocyanate and cinnamaldehyde demonstrated increased antimicrobial activity against Escherichia coli in planktonic form, when packaged into mesoporous silica nanoparticles. Furthermore, the biocide-loaded nanoparticles showed activity against Pseudomonas aeruginosa biofilms that have inherent resistance to antimicrobial agents. The delivery platform can also be expanded to traditional biocides and other non-conventional antimicrobial agents.


Assuntos
Anti-Infecciosos , Biofilmes/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Escherichia coli/fisiologia , Nanopartículas/química , Pseudomonas aeruginosa/fisiologia , Dióxido de Silício , Compostos Orgânicos Voláteis , Acroleína/análogos & derivados , Acroleína/química , Acroleína/farmacologia , Compostos Alílicos/química , Compostos Alílicos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Biofilmes/crescimento & desenvolvimento , Isocianatos/química , Isocianatos/farmacologia , Porosidade , Dióxido de Silício/química , Dióxido de Silício/farmacologia , Compostos Orgânicos Voláteis/farmacologia
17.
Microb Biotechnol ; 10(1): 125-137, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27748032

RESUMO

Cell sorting coupled with single-cell genomics is a powerful tool to circumvent cultivation of microorganisms and reveal microbial 'dark matter'. Single-cell Raman spectra (SCRSs) are label-free biochemical 'fingerprints' of individual cells, which can link the sorted cells to their phenotypic information and ecological functions. We employed a novel Raman-activated cell ejection (RACE) approach to sort single bacterial cells from a water sample in the Red Sea based on SCRS. Carotenoids are highly diverse pigments and play an important role in phototrophic bacteria, giving strong and distinctive Raman spectra. Here, we showed that individual carotenoid-containing cells from a Red Sea sample were isolated based on the characteristic SCRS. RACE-based single-cell genomics revealed putative novel functional genes related to carotenoid and isoprenoid biosynthesis, as well as previously unknown phototrophic microorganisms including an unculturable Cyanobacteria spp. The potential of Raman sorting coupled to single-cell genomics has been demonstrated.


Assuntos
Carotenoides/análise , Cianobactérias/química , Cianobactérias/isolamento & purificação , Água do Mar/microbiologia , Análise de Célula Única/métodos , Análise Espectral Raman , Cianobactérias/genética , Genoma Bacteriano , Oceano Índico , Análise de Sequência de DNA
18.
Environ Pollut ; 213: 438-445, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26967351

RESUMO

The microbial assessment of pollutant toxicity rarely includes behavioral responses. In this study, we investigated the tactic response of Pseudomonas putida G7, a representative of soil bacterium, towards engineered zero-valent iron nanoparticles (nZVIs), as a new end-point assessment of toxicity. The study integrated the characterization of size distribution and charge of nZVIs and tactic reaction response by means of inverted capillary assay and computer-assisted motion analysis of motility behavior. Iron nanoparticles (diameter ≤ 100 nm) were prepared in the absence of oxygen to prevent aggregation, and then exposed in aerobic conditions. We first demonstrate that iron nanoparticles can elicit a negative tactic response in bacteria at low but environmentally-relevant, sub-lethal concentrations (1-10 µg/L). Cells were repelled by nZVIs in the concentration gradients created inside the capillaries, and a significant increase in turning events, characteristic of negative taxis, was detected under exposure to nZVIs. These tactic responses were not detectable after sustained exposure of the nanoparticles to oxygen. This new behavioral assessment may be prospected for the design of sensitive bioassays for nanomaterial toxicity.


Assuntos
Ferro/toxicidade , Nanopartículas Metálicas/toxicidade , Pseudomonas putida/efeitos dos fármacos , Pseudomonas putida/fisiologia , Solo/química , Microbiologia do Solo
19.
Water Res ; 93: 214-221, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26905800

RESUMO

Hybrid approaches for the remediation and detoxification of toxic recalcitrant industrial wastewater were investigated. The focus was waste metalworking fluid, which was selected as a representative model of other waste streams that are toxic, recalcitrant and that require more sustainable routes of safe disposal. The hybrid approaches included biodegradation, electron beam irradiation and zero-valent nano iron advanced oxidation processes that were employed individually and in sequence employing a factorial design. To compare process performance operationally exhausted and pristine metalworking fluid were compared. Sequential hybrid electron beam irradiation, biological, nanoscale zero-valent iron and biological treatment lead to synergistic detoxification and degradation of both recalcitrant streams, as determined by complementary surrogates and lead to overall improved COD removal of 92.8 ± 1.4% up from 85.9 ± 3.4% for the pristine metalworking fluid. Electron beam pre-treatment enabled more effective biotreatment, achieving 69.5 ± 8% (p = 0.005) and 24.6 ± 4.8% (p = 0.044) COD reductions.


Assuntos
Elétrons , Ferro/química , Metalurgia , Eliminação de Resíduos Líquidos/métodos , Bactérias/genética , Bactérias/metabolismo , Biodegradação Ambiental , Reatores Biológicos/microbiologia , Resíduos Industriais , Microscopia Eletrônica de Varredura , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Oxirredução , Reprodutibilidade dos Testes , Fatores de Tempo , Purificação da Água/métodos
20.
Appl Microbiol Biotechnol ; 98(21): 9083-93, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25012785

RESUMO

The activity of methanogens and related bacteria which inhabit the coal beds is essential for stimulating new biogenic coal bed methane (CBM) production from the coal matrix. In this study, the microbial community structure and methanogenesis were investigated in Southern Qinshui Basin in China, and the composition and stable isotopic ratios of CBM were also determined. Although geochemical analysis suggested a mainly thermogenic origin for CBM, the microbial community structure and activities strongly implied the presence of methanogens in situ. 454 pyrosequencing analysis combined with methyl coenzyme-M reductase (mcrA) gene clone library analysis revealed that the archaeal communities in the water samples from both coal seams were similar, with the dominance of hydrogenotrophic methanogen Methanobacterium. The activity and potential of these populations to produce methane were confirmed by the observation of methane production in enrichments supplemented with H2 + CO2 and formate, and the only archaea successfully propagated in the tested water samples was from the genus Methanobacterium. 454 pyrosequencing analysis also recovered the diverse bacterial communities in the water samples, which have the potential to play a role in the coal biodegradation fueling methanogens. These results suggest that the biogenic CBM was generated by coal degradation via the hydrogenotrophic methanogens and related bacteria, which also contribute to the huge CBM reserves in Southern Qinshui Basin, China.


Assuntos
Archaea/metabolismo , Bactérias/metabolismo , Biota , Microbiologia Ambiental , Hidrogênio/metabolismo , Metano/metabolismo , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , China , Análise por Conglomerados , Carvão Mineral , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...