Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Nano Lett ; 21(5): 1915-1920, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33617256

RESUMO

Epitaxial Al-InAs heterostructures appear as a promising materials platform for exploring mesoscopic and topological superconductivity. A unique property of Josephson junction field effect transistors (JJ-FETs) fabricated on these heterostructures is the ability to tune the supercurrent using a metallic gate. Here, we report the fabrication and measurement of gate-tunable Al-InAs JJ-FETs in which the gate dielectric in contact with the InAs is produced by mechanically exfoliated hexagonal boron nitride (h-BN) followed by dry transfer. We discuss a versatile fabrication process that enables compatibility between layered material transfer and Al-InAs heterostructures that allows us to achieve full gate-tunability of supercurrent by using only 5 nm thick h-BN flakes. Our study shows that pristine properties of epitaxial Josephson junctions, such as product of normal resistance and critical current, IcRn, are preserved. Furthermore, complementary measurements confirm that using h-BN dielectric changes the channel density less when compared to atomic layer deposition of Al2O3.

2.
J Vis Exp ; (143)2019 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-30663641

RESUMO

We describe methods for producing and analyzing large, thin flakes of air-sensitive two-dimensional materials. Thin flakes of layered or van der Waals crystals are produced using mechanical exfoliation, in which layers are peeled off a bulk crystal using adhesive tape. This method produces high-quality flakes, but they are often small and can be hard to find, particularly for materials with relatively high cleavage energies such as black phosphorus. By heating the substrate and the tape, two-dimensional material adhesion to the substrate is promoted, and the flake yield can be increased by up to a factor of ten. After exfoliation, it is necessary to image or otherwise analyze these flakes but some two-dimensional materials are sensitive to oxygen or water and will degrade when exposed air. We have designed and tested a hermetic transfer cell to temporarily maintain the inert environment of a glovebox so that air-sensitive flakes can be imaged and analyzed with minimal degradation. The compact design of the transfer cell is such that optical analysis of sensitive materials can be performed outside of a glovebox without specialized equipment or modifications to existing equipment.


Assuntos
Ar , Fósforo/química , Oxigênio , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...