Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(27): 18370-18378, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38940813

RESUMO

The iron-molybdenum cofactor of nitrogenase (FeMoco) catalyzes fixation of N2 via Fe hydride intermediates. Our understanding of these species has relied heavily on the characterization of well-defined 3d metal hydride complexes, which serve as putative spectroscopic models. Although the Fe ions in FeMoco, a weak-field cluster, are expected to adopt locally high-spin Fe2+/3+ configurations, synthetically accessible hydride complexes featuring d5 or d6 electron counts are almost exclusively low-spin. We report herein the isolation of a terminal hydride complex of four-coordinate, high-spin (d5; S = 5/2) Mn2+. Electron paramagnetic resonance and electron-nuclear double resonance studies reveal an unusually large degree of spin density on the hydrido ligand. In light of the isoelectronic relationship between Mn2+ and Fe3+, our results are expected to inform our understanding of the valence electronic structures of reactive hydride intermediates derived from FeMoco.

2.
IUCrJ ; 11(Pt 3): 423-433, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38700232

RESUMO

Appreciating that the role of the solute-solvent and other outer-sphere interactions is essential for understanding chemistry and chemical dynamics in solution, experimental approaches are needed to address the structural consequences of these interactions, complementing condensed-matter simulations and coarse-grained theories. High-energy X-ray scattering (HEXS) combined with pair distribution function analysis presents the opportunity to probe these structures directly and to develop quantitative, atomistic models of molecular systems in situ in the solution phase. However, at concentrations relevant to solution-phase chemistry, the total scattering signal is dominated by the bulk solvent, prompting researchers to adopt a differential approach to eliminate this unwanted background. Though similar approaches are well established in quantitative structural studies of macromolecules in solution by small- and wide-angle X-ray scattering (SAXS/WAXS), analogous studies in the HEXS regime-where sub-ångström spatial resolution is achieved-remain underdeveloped, in part due to the lack of a rigorous theoretical description of the experiment. To address this, herein we develop a framework for differential solution scattering experiments conducted at high energies, which includes concepts of the solvent-excluded volume introduced to describe SAXS/WAXS data, as well as concepts from the time-resolved X-ray scattering community. Our theory is supported by numerical simulations and experiment and paves the way for establishing quantitative methods to determine the atomic structures of small molecules in solution with resolution approaching that of crystallography.

3.
Organometallics ; 43(3): 341-348, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38362485

RESUMO

We report herein the synthesis and characterization of a terminal Co(III) imido complex supported by an intermediate field N,N,C heteroscorpionate. This chemistry is enabled through the development of an additional member of this ligand type featuring Ph2(CH3)C- substituents, one of which weakly binds and stabilizes Co in the corresponding Co(I) precursor. The Co(III) imide is low-spin with no evidence for thermal population of open-shell excited states. Unusually, the imido ligand in this molecule tilts markedly toward the Calkyl donor. DFT calculations suggest this structural feature to be largely a result of strong Co-C covalency, underscoring the importance of M-C bonding in determining the (electronic) structure of metal centers supported by this class of ligand.

4.
IUCrJ ; 11(Pt 1): 120-128, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38133556

RESUMO

The application of grazing-incidence total X-ray scattering (GITXS) for pair distribution function (PDF) analysis using >50 keV X-rays from synchrotron light sources has created new opportunities for structural characterization of supported thin films with high resolution. Compared with grazing-incidence wide-angle X-ray scattering, which is only useful for highly ordered materials, GITXS/PDFs expand such analysis to largely disordered or nanostructured materials by examining the atomic pair correlations dependent on the direction relative to the surface of the supporting substrate. A characterization of nanocrystalline In2O3-derived thin films is presented here with in-plane-isotropic and out-of-plane-anisotropic orientational ordering of the atomic structure, each synthesized using different techniques. The atomic orientations of such films are known to vary based on the synthetic conditions. Here, an azimuthal orientational analysis of these films using GITXS with a single incident angle is shown to resolve the markedly different orientations of the atomic structures with respect to the planar support and the different degrees of long-range order, and hence, the terminal surface chemistries. It is anticipated that orientational analysis of GITXS/PDF data will offer opportunities to extend structural analyses of thin films by providing a means to qualitatively determine the major atomic orientation within nanocrystalline and, eventually, non-crystalline films.

5.
Proc Natl Acad Sci U S A ; 120(6): e2210528120, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36719911

RESUMO

Nature employs weak-field metalloclusters to support a wide range of biological processes. The most ubiquitous metalloclusters are the cuboidal Fe-S clusters, which are comprised of Fe sites with locally high-spin electronic configurations. Such configurations enhance rates of ligand exchange and imbue the clusters with a degree of structural plasticity that is increasingly thought to be functionally relevant. Here, we examine this phenomenon using isotope tracing experiments. Specifically, we demonstrate that synthetic [Fe4S4] and [MoFe3S4] clusters exchange their Fe atoms with Fe2+ ions dissolved in solution, a process that involves the reversible cleavage and reformation of every Fe-S bond in the cluster core. This exchange is facile-in most cases occurring at room temperature on the timescale of minutes-and documented over a range of cluster core oxidation states and terminal ligation patterns. In addition to suggesting a highly dynamic picture of cluster structure, these results provide a method for isotopically labeling pre-formed clusters with spin-active nuclei, such as 57Fe. Such a protocol is demonstrated for the radical S-adenosyl-l-methionine enzyme, RlmN.

6.
Inorg Chem ; 61(31): 12318-12326, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35895990

RESUMO

Inspired by mechanistic proposals for N2 reduction at the nitrogenase FeMo cofactor, we report herein a new, strongly σ-donating heteroscorpionate ligand featuring two weak-field pyrazoles and an alkyl donor. This ligand supports four-coordinate Fe(I)-N2, Fe(II)-Cl, and Fe(III)-imido complexes, which we have characterized using a variety of spectroscopic and computational methods. Structural and quantum mechanical analysis reveal the nature of the Fe-C bonds to be essentially invariant between the complexes, with conversion between the (formally) low-valent Fe-N2 and high-valent Fe-imido complexes mediated by pyrazole hemilability. This presents a useful strategy for substrate reduction at such low-coordinate centers and suggests a mechanism by which FeMoco might accommodate the binding of both π-acidic and π-basic nitrogenous substrates.


Assuntos
Compostos Férricos , Molibdoferredoxina , Compostos Férricos/metabolismo , Ligantes , Modelos Moleculares , Molibdoferredoxina/metabolismo , Oxirredução
7.
J Am Chem Soc ; 144(20): 9066-9073, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35575703

RESUMO

Although biological iron-sulfur (Fe-S) clusters perform some of the most difficult redox reactions in nature, they are thought to be composed exclusively of Fe2+ and Fe3+ ions, as well as mixed-valent pairs with average oxidation states of Fe2.5+. We herein show that Fe-S clusters formally composed of these valences can access a wider range of electronic configurations─in particular, those featuring low-valent Fe1+ centers. We demonstrate that CO binding to a synthetic [Fe4S4]0 cluster supported by N-heterocyclic carbene ligands induces the generation of Fe1+ centers via intracluster electron transfer, wherein a neighboring pair of Fe2+ sites reduces the CO-bound site to a low-valent Fe1+ state. Similarly, CO binding to an [Fe4S4]+ cluster induces electron delocalization with a neighboring Fe site to form a mixed-valent Fe1.5+Fe2.5+ pair in which the CO-bound site adopts partial low-valent character. These low-valent configurations engender remarkable C-O bond activation without having to traverse highly negative and physiologically inaccessible [Fe4S4]0/[Fe4S4]- redox couples.


Assuntos
Proteínas Ferro-Enxofre , Ferro , Eletrônica , Ferro/química , Proteínas Ferro-Enxofre/química , Oxirredução , Enxofre/química
8.
J Am Chem Soc ; 142(33): 14314-14323, 2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32692919

RESUMO

Alkyl-ligated iron-sulfur clusters in the [Fe4S4]3+ charge state have been proposed as short-lived intermediates in a number of enzymatic reactions. To better understand the properties of these intermediates, we have prepared and characterized the first synthetic [Fe4S4]3+-alkyl cluster. Isolation of this highly reactive species was made possible by the development of an expanded scorpionate ligand suited to the encapsulation of cuboidal clusters. Like the proposed enzymatic intermediates, this synthetic [Fe4S4]3+-alkyl cluster adopts an S = 1/2 ground state with giso > 2. Mössbauer spectroscopic studies reveal that the alkylated Fe has an unusually low isomer shift, which reflects the highly covalent Fe-C bond and the localization of Fe3+ at the alkylated site in the solid state. Paramagnetic 1H NMR studies establish that this valence localization persists in solution at physiologically relevant temperatures, an effect that has not been observed for [Fe4S4]3+ clusters outside of a protein. These findings establish the unusual electronic-structure effects imparted by the strong-field alkyl ligand and lay the foundation for understanding the electronic structures of [Fe4S4]3+-alkyl intermediates in biology.


Assuntos
Ferro/química , Enxofre/química , Alquilação , Ferro/metabolismo , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Ligantes , Estrutura Molecular , Enxofre/metabolismo
9.
J Am Chem Soc ; 141(34): 13330-13335, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31373801

RESUMO

Although alkyl complexes of [Fe4S4] clusters have been invoked as intermediates in a number of enzymatic reactions, obtaining a detailed understanding of their reactivity patterns and electronic structures has been difficult owing to their transient nature. To address this challenge, we herein report the synthesis and characterization of a 3:1 site-differentiated [Fe4S4]2+-alkyl cluster. Whereas [Fe4S4]2+ clusters typically exhibit pairwise delocalized electronic structures in which each Fe has a formal valence of 2.5+, Mössbauer spectroscopic and computational studies suggest that the highly electron-releasing alkyl group partially localizes the charge distribution within the cubane, an effect that has not been previously observed in tetrahedrally coordinated [Fe4S4] clusters.


Assuntos
Enzimas/química , Compostos de Ferro/análogos & derivados , Proteínas Ferro-Enxofre/química , Compostos de Enxofre/química , Alquilação , Materiais Biomiméticos/síntese química , Materiais Biomiméticos/química , Transporte de Elétrons , Elétrons , Enzimas/síntese química , Compostos de Ferro/síntese química , Proteínas Ferro-Enxofre/síntese química , Modelos Moleculares , Compostos de Enxofre/síntese química
10.
Angew Chem Int Ed Engl ; 58(19): 6220-6224, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-30759317

RESUMO

Species with 2-center, 3-electron (2c/3e- ) σ bonds are of interest owing to their fascinating electronic structures and potential for interesting reactivity patterns. Report here is the synthesis and characterization of a pair of zerovalent (d9 ) trigonal pyramidal Rh and Ir complexes that feature 2c/3e- σ bonds to the Si atom of a tripodal tris(phosphine)silatrane ligand. X-ray diffraction, continuous wave and pulse electron paramagnetic resonance, density-functional theory calculations, and reactivity studies have been used to characterize these electronically distinctive compounds. The data available highlight a 2c/3e- bonding framework with a σ*-SOMO of metal 4- or 5dz 2 parentage that is partially stabilized by significant mixing with Si (3pz ) and metal (5- or 6pz ) orbitals. Metal-ligand covalency thus buffers the expected destabilization of transition-metal (TM)-silyl σ*-orbitals by d-p mixing, affording well-characterized examples of TM-main group, and hence polar, 2c/3e- σ "half-bonds".

11.
Inorg Chem ; 58(5): 3535-3549, 2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30762355

RESUMO

The intermediacy of metal-NNH2 complexes has been implicated in the catalytic cycles of several examples of transition-metal-mediated nitrogen (N2) fixation. In this context, we have shown that triphosphine-supported Fe(N2) complexes can be reduced and protonated at the distal N atom to yield Fe(NNH2) complexes over an array of charge and oxidation states. Upon exposure to further H+/e- equivalents, these species either continue down a distal-type Chatt pathway to yield a terminal iron(IV) nitride or instead follow a distal-to-alternating pathway resulting in N-H bond formation at the proximal N atom. To understand the origin of this divergent selectivity, herein we synthesize and elucidate the electronic structures of a redox series of Fe(NNMe2) complexes, which serve as spectroscopic models for their reactive protonated congeners. Using a combination of spectroscopies, in concert with density functional theory and correlated ab initio calculations, we evidence one-electron redox noninnocence of the "NNMe2" moiety. Specifically, although two closed-shell configurations of the "NNR2" ligand have been commonly considered in the literature-isodiazene and hydrazido(2-)-we provide evidence suggesting that, in their reduced forms, the present iron complexes are best viewed in terms of an open-shell [NNR2]•- ligand coupled antiferromagnetically to the Fe center. This one-electron redox noninnocence resembles that of the classically noninnocent ligand NO and may have mechanistic implications for selectivity in N2 fixation activity.

12.
J Am Chem Soc ; 139(48): 17683-17693, 2017 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-29117478

RESUMO

Grafting density and graft distribution impact the chain dimensions and physical properties of polymers. However, achieving precise control over these structural parameters presents long-standing synthetic challenges. In this report, we introduce a versatile strategy to synthesize polymers with tailored architectures via grafting-through ring-opening metathesis polymerization (ROMP). One-pot copolymerization of an ω-norbornenyl macromonomer and a discrete norbornenyl comonomer (diluent) provides opportunities to control the backbone sequence and therefore the side chain distribution. Toward sequence control, the homopolymerization kinetics of 23 diluents were studied, representing diverse variations in the stereochemistry, anchor groups, and substituents. These modifications tuned the homopolymerization rate constants over 2 orders of magnitude (0.36 M-1 s-1 < khomo < 82 M-1 s-1). Rate trends were identified and elucidated by complementary mechanistic and density functional theory (DFT) studies. Building on this foundation, complex architectures were achieved through copolymerizations of selected diluents with a poly(d,l-lactide) (PLA), polydimethylsiloxane (PDMS), or polystyrene (PS) macromonomer. The cross-propagation rate constants were obtained by nonlinear least-squares fitting of the instantaneous comonomer concentrations according to the Mayo-Lewis terminal model. In-depth kinetic analyses indicate a wide range of accessible macromonomer/diluent reactivity ratios (0.08 < r1/r2 < 20), corresponding to blocky, gradient, or random backbone sequences. We further demonstrated the versatility of this copolymerization approach by synthesizing AB graft diblock polymers with tapered, uniform, and inverse-tapered molecular "shapes." Small-angle X-ray scattering analysis of the self-assembled structures illustrates effects of the graft distribution on the domain spacing and backbone conformation. Collectively, the insights provided herein into the ROMP mechanism, monomer design, and homo- and copolymerization rate trends offer a general strategy for the design and synthesis of graft polymers with arbitrary architectures. Controlled copolymerization therefore expands the parameter space for molecular and materials design.

13.
J Am Chem Soc ; 139(43): 15312-15315, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28992418

RESUMO

Terminal iron nitrides (Fe≡N) have been proposed as intermediates of (bio)catalytic nitrogen fixation, yet experimental evidence to support this hypothesis has been lacking. In particular, no prior synthetic examples of terminal Fe≡N species have been derived from N2. Here we show that a nitrogen-fixing Fe-N2 catalyst can be protonated to form a neutral Fe(NNH2) hydrazido(2-) intermediate, which, upon further protonation, heterolytically cleaves the N-N bond to release [FeIV≡N]+ and NH3. These observations provide direct evidence for the viability of a Chatt-type (distal) mechanism for Fe-mediated N2-to-NH3 conversion. The physical oxidation state range of the Fe complexes in this transformation is buffered by covalency with the ligand, a feature of possible relevance to catalyst design in synthetic and natural systems that facilitate multiproton/multielectron redox processes.


Assuntos
Fixação de Nitrogênio , Nitrogênio/química , Amônia/química , Catálise , Elétrons , Ferro/química , Ligantes , Oxirredução , Prótons
14.
Angew Chem Int Ed Engl ; 56(17): 4772-4776, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28338266

RESUMO

We report the synthesis, characterization, and reactivity of [LFe3 (PhPz)3 OMn(s PhIO)][OTf]x (3: x=2; 4: x=3), where 4 is one of very few examples of iodosobenzene-metal adducts characterized by X-ray crystallography. Access to these rare heterometallic clusters enabled differentiation of the metal centers involved in oxygen atom transfer (Mn) or redox modulation (Fe). Specifically, 57 Fe Mössbauer and X-ray absorption spectroscopy provided unique insights into how changes in oxidation state (FeIII2 FeII MnII vs. FeIII3 MnII ) influence oxygen atom transfer in tetranuclear Fe3 Mn clusters. In particular, a one-electron redox change at a distal metal site leads to a change in oxygen atom transfer reactivity by ca. two orders of magnitude.


Assuntos
Iodobenzenos/química , Compostos de Ferro/química , Manganês/química , Oxigênio/química , Cristalografia por Raios X , Elétrons , Modelos Moleculares , Oxirredução
15.
J Am Chem Soc ; 138(16): 5341-50, 2016 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-27026402

RESUMO

The mechanisms of the few known molecular nitrogen-fixing systems, including nitrogenase enzymes, are of much interest but are not fully understood. We recently reported that Fe-N2 complexes of tetradentate P3(E) ligands (E = B, C) generate catalytic yields of NH3 under an atmosphere of N2 with acid and reductant at low temperatures. Here we show that these Fe catalysts are unexpectedly robust and retain activity after multiple reloadings. Nearly an order of magnitude improvement in yield of NH3 for each Fe catalyst has been realized (up to 64 equiv of NH3 produced per Fe for P3(B) and up to 47 equiv for P3(C)) by increasing acid/reductant loading with highly purified acid. Cyclic voltammetry shows the apparent onset of catalysis at the P3(B)Fe-N2/P3(B)Fe-N2(-) couple and controlled-potential electrolysis of P3(B)Fe(+) at -45 °C demonstrates that electrolytic N2 reduction to NH3 is feasible. Kinetic studies reveal first-order rate dependence on Fe catalyst concentration (P3(B)), consistent with a single-site catalyst model. An isostructural system (P3(Si)) is shown to be appreciably more selective for hydrogen evolution. In situ freeze-quench Mössbauer spectroscopy during turnover reveals an iron-borohydrido-hydride complex as a likely resting state of the P3(B)Fe catalyst system. We postulate that hydrogen-evolving reaction activity may prevent iron hydride formation from poisoning the P3(B)Fe system. This idea may be important to consider in the design of synthetic nitrogenases and may also have broader significance given that intermediate metal hydrides and hydrogen evolution may play a key role in biological nitrogen fixation.


Assuntos
Ferro/metabolismo , Nitrogenase/química , Nitrogenase/metabolismo , Amônia/metabolismo , Catálise , Eletrólise , Hidrogênio/metabolismo , Ferro/química , Cinética , Fixação de Nitrogênio , Espectroscopia de Mossbauer
16.
J Am Chem Soc ; 138(5): 1486-9, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26760217

RESUMO

Herein we report the intramolecular arene C-H and C-F bond oxygenation by tetranuclear iron complexes. Treatment of [LFe3(PhPz)3OFe][OTf]2 (1) or its fluorinated analog [LFe3(F2ArPz)3OFe][OTf]2 (5) with iodosobenzene results in the regioselective hydroxylation of a bridging pyrazolate ligand, converting a C-H or C-F bond into a C-O bond. The observed reactivity suggests the formation of terminal and reactive Fe-oxo intermediates. With the possibility of intramolecular electron transfer within clusters in 1 and 5, different reaction pathways (Fe(IV)-oxo vs Fe(III)-oxo) might be responsible for the observed arene hydroxylation.


Assuntos
Carbono/química , Flúor/química , Hidrogênio/química , Ferro/química , Substâncias Macromoleculares/química , Ligantes , Modelos Moleculares
17.
J Am Chem Soc ; 137(44): 14094-106, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26390375

RESUMO

A series of tetranuclear iron complexes displaying a site-differentiated metal center was synthesized. Three of the metal centers are coordinated to our previously reported ligand, based on a 1,3,5-triarylbenzene motif with nitrogen and oxygen donors. The fourth (apical) iron center is coordinatively unsaturated and appended to the trinuclear core through three bridging pyrazolates and an interstitial µ4-oxide moiety. Electrochemical studies of complex [LFe3(PhPz)3OFe][OTf]2 revealed three reversible redox events assigned to the Fe(II)4/Fe(II)3Fe(III) (-1.733 V), Fe(II)3Fe(III)/Fe(II)2Fe(III)2 (-0.727 V), and Fe(II)2Fe(III)2/Fe(II)Fe(III)3 (0.018 V) redox couples. Combined Mössbauer and crystallographic studies indicate that the change in oxidation state is exclusively localized at the triiron core, without changing the oxidation state of the apical metal center. This phenomenon is assigned to differences in the coordination environment of the two metal sites and provides a strategy for storing electron and hole equivalents without affecting the oxidation state of the coordinatively unsaturated metal. The presence of a ligand-binding site allowed the effect of redox modulation on nitric oxide activation by an Fe(II) metal center to be studied. Treatment of the clusters with nitric oxide resulted in binding of NO to the apical iron center, generating a {FeNO}(7) moiety. As with the NO-free precursors, the three reversible redox events are localized at the iron centers distal from the NO ligand. Altering the redox state of the triiron core resulted in significant change in the NO stretching frequency, by as much as 100 cm(-1). The increased activation of NO is attributed to structural changes within the clusters, in particular, those related to the interaction of the metal centers with the interstitial atom. The differences in NO activation were further shown to lead to differential reactivity, with NO disproportionation and N2O formation performed by the more electron-rich cluster.


Assuntos
Ferro/química , Óxido Nítrico/química , Óxidos de Nitrogênio/química , Modelos Moleculares , Estrutura Molecular , Oxirredução
18.
Inorg Chem ; 54(19): 9256-62, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26001022

RESUMO

Well-defined molecular catalysts for the reduction of N2 to NH3 with protons and electrons remain very rare despite decades of interest and are currently limited to systems featuring molybdenum or iron. This report details the synthesis of a molecular cobalt complex that generates superstoichiometric yields of NH3 (>200% NH3 per Co-N2 precursor) via the direct reduction of N2 with protons and electrons. While the NH3 yields reported herein are modest by comparison to those of previously described iron and molybdenum systems, they intimate that other metals are likely to be viable as molecular N2 reduction catalysts. Additionally, a comparison of the featured tris(phosphine)borane Co-N2 complex with structurally related Co-N2 and Fe-N2 species shows how remarkably sensitive the N2 reduction performance of potential precatalysts is. These studies enable consideration of the structural and electronic effects that are likely relevant to N2 conversion activity, including the π basicity, charge state, and geometric flexibility.


Assuntos
Amônia/síntese química , Cobalto/química , Nitrogênio/química , Compostos Organometálicos/química , Amônia/química , Catálise , Modelos Moleculares , Conformação Molecular , Compostos Organometálicos/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...