Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anesth Analg ; 125(2): 434-441, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28682948

RESUMO

BACKGROUND: Malignant hyperthermia (MH), a pharmacogenetic disorder of skeletal muscle, presents with a potentially lethal hypermetabolic reaction to certain anesthetics. However, some MH-susceptible patients experience muscle weakness, fatigue, and exercise intolerance in the absence of anesthetic triggers. The objective of this exploratory study was to elucidate the pathophysiology of exercise intolerance in patients tested positive for MH with the caffeine-halothane contracture test. To this end, we used phosphorus magnetic resonance spectroscopy, blood oxygen level-dependent functional magnetic resonance imaging (MRI), and traditional exercise testing to compare skeletal muscle metabolism in MH-positive patients and healthy controls. METHODS: Skeletal muscle metabolism was assessed using phosphorus magnetic resonance spectroscopy and blood oxygen level-dependent functional MRI in 29 MH-positive patients and 20 healthy controls. Traditional measures of physical capacity were employed to measure aerobic capacity, anaerobic capacity, and muscle strength. RESULTS: During 30- and 60-second exercise, MH-positive patients had significantly lower ATP production via the oxidative pathway compared to healthy controls. MH-positive patients also had a longer recovery time with blood oxygen level-dependent functional MRI compared to healthy controls. Exercise testing revealed lower aerobic and anaerobic capacity in MH-positive patients compared to healthy controls. CONCLUSIONS: Results of this exploratory study suggest that MH-positive patients have impaired aerobic metabolism compared to healthy individuals. This could explain the exercise intolerance exhibited in MH-susceptible patient population.


Assuntos
Halotano/farmacologia , Hipertermia Maligna/fisiopatologia , Contração Muscular/efeitos dos fármacos , Músculo Esquelético/metabolismo , Adulto , Anestésicos/farmacologia , Antropometria , Cafeína/farmacologia , Estudos de Casos e Controles , Suscetibilidade a Doenças , Teste de Esforço , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Hipertermia Maligna/complicações , Doenças Metabólicas/complicações , Pessoa de Meia-Idade , Músculo Esquelético/fisiopatologia , Doenças Musculares/complicações , Oxigênio/sangue , Inquéritos e Questionários
2.
Brain ; 133(Pt 8): 2232-47, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20659956

RESUMO

Treatment of early relapsing-remitting multiple sclerosis with the lymphocyte-depleting humanized monoclonal antibody alemtuzumab (Campath [registered trade mark]) significantly reduced the risk of relapse and accumulation of disability compared with interferon ß-1a in a phase 2 trial [Coles et al., (Alemtuzumab vs. interferon ß-1a in early multiple sclerosis. N Engl J Med 2008; 359: 1786-801)]. Patients treated with alemtuzumab experienced an improvement in disability at 6 months that was sustained for at least 3 years. In contrast, those treated with interferon ß-1a steadily accumulated disability. Here, by post hoc subgroup analyses of the CAMMS223 trial, we show that among participants with no clinical disease activity immediately before treatment, or any clinical or radiological disease activity on-trial, disability improved after alemtuzumab but not following interferon ß-1a. This suggests that disability improvement after alemtuzumab is not solely attributable to its anti-inflammatory effect. So we hypothesized that lymphocytes, reconstituting after alemtuzumab, permit or promote brain repair. Here we show that after alemtuzumab, and only when specifically stimulated with myelin basic protein, peripheral blood mononuclear cell cultures produced increased concentrations of brain-derived neurotrophic factor, platelet-derived growth factor and ciliary neurotrophic factor. Analysis by reverse transcriptase polymerase chain reaction of cell separations showed that the increased production of ciliary neurotrophic factor and brain-derived neurotrophic factor after alemtuzumab is attributable to increased production by T cells. Media from these post-alemtuzumab peripheral blood mononuclear cell cultures promoted survival of rat neurones and increased axonal length in vitro, effects that were partially reversed by neutralizing antibodies against brain-derived nerve growth factor and ciliary neurotrophic factor. This conditioned media also enhanced oligodendrocyte precursor cell survival, maturation and myelination. Taken together, the clinical analyses and laboratory findings support the interpretation that improvement in disability after alemtuzumab may result, in part, from neuroprotection associated with increased lymphocytic delivery of neurotrophins to the central nervous system.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Anticorpos Antineoplásicos/uso terapêutico , Autoimunidade , Fatores Imunológicos/uso terapêutico , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/imunologia , Adulto , Alemtuzumab , Animais , Anticorpos Monoclonais Humanizados , Autoimunidade/efeitos dos fármacos , Células Cultivadas , Estudos Transversais , Avaliação da Deficiência , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Interferon beta-1a , Interferon beta/uso terapêutico , Estudos Longitudinais , Linfócitos/imunologia , Masculino , Pessoa de Meia-Idade , Neuroimunomodulação/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Estudos Retrospectivos , Resultado do Tratamento , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...