Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dis Aquat Organ ; 96(1): 29-43, 2011 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-21991663

RESUMO

Viral hemorrhagic septicemia virus (VHSV) is a fish rhabdovirus that causes disease in a broad range of marine and freshwater hosts. The known geographic range includes the Northern Atlantic and Pacific Oceans, and recently it has invaded the Great Lakes region of North America. The goal of this work was to characterize genetic diversity of Great Lakes VHSV isolates at the early stage of this viral emergence by comparing a partial glycoprotein (G) gene sequence (669 nt) of 108 isolates collected from 2003 to 2009 from 31 species and at 37 sites. Phylogenetic analysis showed that all isolates fell into sub-lineage IVb within the major VHSV genetic group IV. Among these 108 isolates, genetic diversity was low, with a maximum of 1.05% within the 669 nt region. There were 11 unique sequences, designated vcG001 to vcG011. Two dominant sequence types, vcG001 and vcG002, accounted for 90% (97 of 108) of the isolates. The vcG001 isolates were most widespread. We saw no apparent association of sequence type with host or year of isolation, but we did note a spatial pattern, in which vcG002 isolates were more prevalent in the easternmost sub-regions, including inland New York state and the St. Lawrence Seaway. Different sequence types were found among isolates from single disease outbreaks, and mixtures of types were evident within 2 isolates from individual fish. Overall, the genetic diversity of VHSV in the Great Lakes region was found to be extremely low, consistent with an introduction of a new virus into a geographic region with previously naive host populations.


Assuntos
Doenças dos Peixes/virologia , Variação Genética , Novirhabdovirus/genética , Animais , Doenças dos Peixes/epidemiologia , Peixes , Água Doce , Great Lakes Region/epidemiologia , Filogenia
2.
Mar Biotechnol (NY) ; 13(4): 672-83, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20936318

RESUMO

Viral hemorrhagic septicemia virus (VHSV), belonging to the genus Novirhabdovirus in the family of Rhabdoviridae, causes a highly contagious disease of fresh and saltwater fish worldwide. Recently, a novel genotype of VHSV, designated IVb, has invaded the Great Lakes in North America, causing large-scale epidemics in wild fish. An efficient reverse genetics system was developed to generate a recombinant VHSV of genotype IVb from cloned cDNA. The recombinant VHSV (rVHSV) was comparable to the parental wild-type strain both in vitro and in vivo, causing high mortality in yellow perch (Perca flavescens). A modified recombinant VHSV was generated in which the NV gene was substituted with an enhanced green fluorescent protein gene (rVHSV-ΔNV-EGFP), and another recombinant was made by inserting the EGFP gene into the full-length viral clone between the P and M genes (rVHSV-EGFP). The in vitro replication kinetics of rVHSV-EGFP was similar to rVHSV; however, the rVHSV-ΔNV-EGFP grew 2 logs lower. In yellow perch challenges, wtVHSV and rVHSV induced 82-100% cumulative per cent mortality (CPM), respectively, whereas rVHSV-EGFP produced 62% CPM and rVHSV-ΔNV-EGFP caused only 15% CPM. No reversion of mutation was detected in the recovered viruses and the recombinant viruses stably maintained the foreign gene after several passages. These results indicate that the NV gene of VHSV is not essential for viral replication in vitro and in vivo, but it plays an important role in viral replication efficiency and pathogenicity. This system will facilitate studies of VHSV replication, virulence, and production of viral vectored vaccines.


Assuntos
DNA Recombinante/genética , Genoma Viral/genética , Novirhabdovirus/genética , Novirhabdovirus/patogenicidade , Percas/virologia , Genética Reversa/métodos , Proteínas Virais/genética , Animais , DNA Complementar/genética , Componentes Genômicos , Great Lakes Region , Proteínas de Fluorescência Verde/genética , Oligonucleotídeos/genética , Plasmídeos/genética , Reação em Cadeia da Polimerase , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Replicação Viral/genética
3.
J Aquat Anim Health ; 23(4): 207-17, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22372249

RESUMO

Viral hemorrhagic septicemia virus (VHSV) was first detected in the Laurentian Great Lakes in 2005 during a mortality event in the Bay of Quinte, Lake Ontario. Subsequent analysis of archived samples determined that the first known isolation of VHSV in the Laurentian Great Lakes was from a muskellunge Esox masquinongy collected in Lake St. Clair in 2003. By the end of 2008, mortality events and viral isolations had occurred in all of the Laurentian Great Lakes except Lake Superior. In 2009, a focused disease surveillance program was designed to determine whether VHSV was also present in Lake Superior. In this survey, 874 fish from 7 sites along the U.S. shoreline of Lake Superior were collected during June 2009. Collections were focused on nearshore species known to be susceptible to VHSV. All fish were dissected individually by using aseptic techniques and were tested for the presence of VHSV genetic material by use of a quantitative reverse transcription (qRT) polymerase chain reaction (PCR) targeting the viral nucleoprotein gene. Seventeen fish from two host species at two different sites tested positive at low levels for VHSV. All attempts to isolate virus in cell culture were unsuccessful. However, the presence of viral RNA was confirmed independently in five fish by using a nested PCR that targeted the glycoprotein (G) gene. Partial G gene sequences obtained from three fish were identical to the corresponding sequence from the original 2003 VHSV isolate (MI03) from muskellunge. These detections represent the earliest evidence for the presence of VHSV in Lake Superior and illustrate the utility of the highly sensitive qRT-PCR assay for disease surveillance in aquatic animals.


Assuntos
Doenças dos Peixes/virologia , Lagos , Novirhabdovirus/isolamento & purificação , Perciformes , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Infecções por Rhabdoviridae/veterinária , Animais , Doenças dos Peixes/epidemiologia , Great Lakes Region , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Infecções por Rhabdoviridae/epidemiologia , Infecções por Rhabdoviridae/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...