Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38069257

RESUMO

Hemolytic disorders, like malaria and sickle cell disease (SCD), are responsible for significant mortality and morbidity rates globally, specifically in the Americas and Africa. In both malaria and SCD, red blood cell hemolysis leads to the release of a cytotoxic heme that triggers the expression of unique inflammatory profiles, which mediate the tissue damage and pathogenesis of both diseases. MicroRNAs (miRNAs), such as miR-451a and let-7i-5p, contribute to a reduction in the pro-inflammatory responses induced by circulating free hemes. MiR-451a targets both IL-6R (pro-inflammatory) and 14-3-3ζ (anti-inflammatory), and when this miRNA is present, IL-6R is reduced and 14-3-3ζ is increased. Let-7i-5p targets and reduces TLR4, which results in anti-inflammatory signaling. These gene targets regulate inflammation via NFκB regulation and increase anti-inflammatory signaling. Additionally, they indirectly regulate the expression of key heme scavengers, such as heme-oxygenase 1 (HO-1) (coded by the HMOX1 gene) and hemopexin, to decrease circulating cytotoxic heme concentration. MiRNAs can be transported within extracellular vesicles (EVs), such as exosomes, offering insights into the mechanisms of mitigating heme-induced inflammation. We tested the hypothesis that miR-451a- or let-7i-5p-loaded artificial EVs (liposomes) will reduce heme-induced inflammation in brain vascular endothelial cells (HBEC-5i, ATCC: CRL-3245) and macrophages (THP-1, ATCC: TIB-202) in vitro. We completed arginase and nitric oxide assays to determine anti- and pro-inflammatory macrophage presence, respectively. We also assessed the gene expression of IL-6R, TLR4, 14-3-3ζ, and NFκB by RT-qPCR for both cell lines. Our findings revealed that the exposure of HBEC-5i and THP-1 to liposomes loaded with miR-451a or let-7i-5p led to a reduced mRNA expression of IL-6R, TLR4, 14-3-3ζ, and NFκB when treated with a heme. It also resulted in the increased expression of HMOX1 and hemopexin. Finally, macrophages exhibited a tendency toward adopting an anti-inflammatory differentiation phenotype. These findings suggest that miRNA-loaded liposomes can modulate heme-induced inflammation and can be used to target specific cellular pathways, mediating inflammation common to hematological conditions, like malaria and SCD.


Assuntos
Anemia Falciforme , Malária , MicroRNAs , Humanos , MicroRNAs/metabolismo , Hemólise , Lipossomos/metabolismo , Heme/metabolismo , Células Endoteliais/metabolismo , Hemopexina/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Proteínas 14-3-3/metabolismo , Anemia Falciforme/genética , Anemia Falciforme/metabolismo , Inflamação/genética , Inflamação/metabolismo , Anti-Inflamatórios/metabolismo , Malária/metabolismo
2.
Microbiome ; 11(1): 256, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978573

RESUMO

BACKGROUND: Intestinal epithelial cell (IEC) mitochondrial dysfunction involvement in inflammatory bowel diseases (IBD), including Crohn's disease affecting the small intestine, is emerging in recent studies. As the interface between the self and the gut microbiota, IECs serve as hubs of bidirectional cross-talk between host and luminal microbiota. However, the role of mitochondrial-microbiota interaction in the ileum is largely unexplored. Prohibitin 1 (PHB1), a chaperone protein of the inner mitochondrial membrane required for optimal electron transport chain function, is decreased during IBD. We previously demonstrated that mice deficient in PHB1 specifically in IECs (Phb1i∆IEC) exhibited mitochondrial impairment, Paneth cell defects, gut microbiota dysbiosis, and spontaneous inflammation in the ileum (ileitis). Mice deficient in PHB1 in Paneth cells (epithelial secretory cells of the small intestine; Phb1∆PC) also exhibited mitochondrial impairment, Paneth cell defects, and spontaneous ileitis. Here, we determined whether this phenotype is driven by Phb1 deficiency-associated ileal microbiota alterations or direct effects of loss of PHB1 in host IECs. RESULTS: Depletion of gut microbiota by broad-spectrum antibiotic treatment in Phb1∆PC or Phb1i∆IEC mice revealed a necessary role of microbiota to cause ileitis. Using germ-free mice colonized with ileal microbiota from Phb1-deficient mice, we show that this microbiota could not independently induce ileitis without host mitochondrial dysfunction. The luminal microbiota phenotype of Phb1i∆IEC mice included a loss of the short-chain fatty acid butyrate. Supplementation of butyrate in Phb1-deficient mice ameliorated Paneth cell abnormalities and ileitis. Phb1-deficient ileal enteroid models suggest deleterious epithelial-intrinsic responses to ileal microbiota that were protected by butyrate. CONCLUSIONS: These results suggest a mutual and essential reinforcing interplay of gut microbiota and host IEC, including Paneth cell, mitochondrial health in influencing ileitis. Restoration of butyrate is a potential therapeutic option in Crohn's disease patients harboring epithelial cell mitochondrial dysfunction. Video Abstract.


Assuntos
Doença de Crohn , Microbioma Gastrointestinal , Ileíte , Doenças Inflamatórias Intestinais , Humanos , Animais , Camundongos , Ileíte/metabolismo , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Celulas de Paneth , Butiratos/metabolismo , Mitocôndrias/metabolismo , Mucosa Intestinal/metabolismo
3.
Inflammation ; 46(6): 2055-2070, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37389684

RESUMO

Endometriosis is a common gynecological inflammatory disorder characterized by immune system dysregulation, which is involved in lesion initiation and progression. Studies have demonstrated that several cytokines are associated with the evolution of endometriosis, including tumor necrosis factor-α (TNFα). TNFα is a non-glycosylated cytokine protein with potent inflammatory, cytotoxic, and angiogenic potential. In the current study, we examined the ability of TNFα to induce dysregulation of microRNAs (miRNAs) linked to NFkB signaling pathways, thus contributing to the pathogenesis of endometriosis. Using RT-qPCR, the expression of several miRNAs was quantified in primary cells derived from eutopic endometrium of endometriosis subjects (EESC) and normal endometrial stromal cells (NESC), and also TNFα-treated NESCs. The phosphorylation of the pro-inflammatory molecule NF-κB and the candidates of the survival pathways PI3K, AKT, and ERK was measured by western blot analysis. The elevated secretion of TNFα in EESCs downregulates the expression level of several miRNAs significantly in EESCs compared to NESCs. Also, treatment of NESCs with exogenous TNFα significantly reduced the expression of miRNAs in a dose-dependent manner to levels similar to EESCs. In addition, TNFα significantly increased the phosphorylation of the PI3K, AKT, ERK, and NF-κB signaling pathways. Notably, treatment with curcumin (CUR, diferuloylmethane), an anti-inflammatory polyphenol, significantly increased the expression of dysregulated miRNAs in EESC in a dose-dependent manner. Our findings demonstrate that TNFα is upregulated in EESCs, which subsequently dysregulates the expression of miRNAs, contributing to the pathophysiology of endometriotic cells. CUR effectively inhibits the expression of TNFα, subsequently altering miRNA levels and suppressing the phosphorylation of AKT, ERK, and NF-κB.


Assuntos
Curcumina , Endometriose , MicroRNAs , Feminino , Humanos , NF-kappa B/metabolismo , MicroRNAs/metabolismo , Endometriose/patologia , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Citocinas/metabolismo , Curcumina/farmacologia , Endométrio , Fosfatidilinositol 3-Quinases/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-37174259

RESUMO

The National Research Mentoring Network (NRMN) Strategic Empowerment Tailored for Health Equity Investigators (SETH) study evaluates the value of adding Developmental Network to Coaching in the career advancement of diverse Early-Stage Investigators (ESIs). Focused NIH-formatted Mock Reviewing Sessions (MRS) prior to the submission of grants can significantly enhance the scientific merits of an ESI's grant application. We evaluated the most prevalent design, analysis-related factors, and the likelihood of grant submissions and awards associated with going through MRS, using descriptive statistics, Chi-square, and logistic regression methods. A total of 62 out of 234 applications went through the MRS. There were 69.4% that pursued R grants, 22.6% career development (K) awards, and 8.0% other grant mechanisms. Comparing applications that underwent MRS versus those that did not (N = 172), 67.7% vs. 38.4% were submitted for funding (i.e., unadjusted difference of 29.3%; OR = 4.8, 95% CI = (2.4, 9.8), p-value < 0.0001). This indicates that, relative to those who did not undergo MRS, ESIs who did, were 4.8 times as likely to submit an application for funding. Also, ESIs in earlier cohorts (1-2) (a period that coincided with the pre COVID-19 era) as compared to those who were recruited at later cohorts (3-4) (i.e., during the peak of COVID-19 period) were 3.8 times as likely to submit grants (p-value < 0.0001). The most prevalent issues that were identified included insufficient statistical design considerations and plans (75%), conceptual framework (28.3%), specific aims (11.7%), evidence of significance (3.3%), and innovation (3.3%). MRS potentially enhances grant submissions for extramural funding and offers constructive feedback allowing for modifications that enhance the scientific merits of research grants.


Assuntos
Pesquisa Biomédica , COVID-19 , Equidade em Saúde , Tutoria , Humanos , Estados Unidos , COVID-19/epidemiologia , Mentores
5.
Res Sq ; 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37205467

RESUMO

Endometriosis is a common gynecological inflammatory disorder characterized by immune system dysregulation, which is involved in lesion initiation and progression. Studies have demonstrated that several cytokines are associated with the evolution of endometriosis, including tumor necrosis factor-α (TNFα). TNFα is a non-glycosylated cytokine protein with potent inflammatory, cytotoxic, and angiogenic potential. In the current study, we examined the ability of TNFα to induce dysregulation of microRNAs (miRNAs) linked to NFkB-signaling pathways, thus contributing to the pathogenesis of endometriosis. Using RT-QPCR, the expression of several miRNAs were quantified in primary cells derived from eutopic endometrium of endometriosis subjects (EESC) and normal endometrial stromal cells (NESC) and also TNFα treated NESCs. The phosphorylation of the pro-inflammatory molecule NF-κB and the candidates of the survival pathways PI3K, AKT and ERK was measured by westernblot analysis. The elevated secretion of TNFα in EESCs downregulates the expression level of several miRNAs significantly (p < 0.05) in EESCs compared to NESC. Also treatment of NESCs with exogenous TNFα significantly reduced the expression of miRNAs in a dose-dependent manner to levels similar to EESCs. In addition, TNFα significantly increased the phosphorylation of the PI3K, AKT, ERK, and NF-κB signaling pathways. Notably, treatment with curcumin (CUR, diferuloylmethane), an anti-inflammatory polyphenol, significantly increased the expression of dysregulated miRNAs in EESC in a dose-dependent manner. Our findings demonstrate that TNFα is upregulated in EESCs, which subsequently dysregulates the expression of miRNAs, contributing to the pathophysiology of endometriotic cells. CUR effectively inhibits the expression of TNFα, subsequently altering miRNA levels and suppresses the phosphorylation of AKT, ERK, and NF-κB.

6.
Sci Rep ; 13(1): 18, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36593241

RESUMO

Autophagy of damaged mitochondria, called mitophagy, is an important organelle quality control process involved in the pathogenesis of inflammation, cancer, aging, and age-associated diseases. Many of these disorders are associated with altered expression of the inner mitochondrial membrane (IMM) protein Prohibitin 1. The mechanisms whereby dysfunction occurring internally at the IMM and matrix activate events at the outer mitochondrial membrane (OMM) to induce mitophagy are not fully elucidated. Using the gastrointestinal epithelium as a model system highly susceptible to autophagy inhibition, we reveal a specific role of Prohibitin-induced mitophagy in maintaining intestinal homeostasis. We demonstrate that Prohibitin 1 induces mitophagy in response to increased mitochondrial reactive oxygen species (ROS) through binding to mitophagy receptor Nix/Bnip3L and independently of Parkin. Prohibitin 1 is required for ROS-induced Nix localization to mitochondria and maintaining homeostasis of epithelial cells highly susceptible to mitochondrial dysfunction.


Assuntos
Membranas Mitocondriais , Mitofagia , Membranas Mitocondriais/metabolismo , Proibitinas , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/metabolismo , Autofagia , Proteínas de Membrana/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Mitocondriais/metabolismo
7.
J Ovarian Res ; 15(1): 86, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35883098

RESUMO

BACKGROUND: Granulosa cells (GCs) are multilayered somatic cells within the follicle that provide physical support and microenvironment for the developing oocyte. In recent years, the role of Neuregulin-1 (NRG1), a member of the EGF-like factor family, has received considerable attention due to its neurodevelopmental and cardiac function. However, the exact physiological role of NRG1 in GC is mainly unknown. In order to confirm that NRG1 plays a regulatory role in rat GC functions, endogenous NRG1-knockdown studies were carried out in GCs using RNA interference methodology. RESULTS: Knockdown of NRG1 in GCs resulted in the enhanced expression and secretion of the cytokines and chemokines. In addition, the phosphorylation of PI3K/Akt/ERK1/2 was significantly low in GCs under these experimental conditions. Moreover, in vitro experimental studies suggest that tumor necrosis factor-α (TNFα) treatment causes the physical destruction of GCs by activating caspase-3/7 activity. In contrast, exogenous NRG1 co-treatment of GCs delayed the onset of TNFα-induced apoptosis and inhibited the activation of caspase-3/7 activity. Furthermore, current experimental studies suggest that gonadotropins promote differential expression of NRG1 and ErbB3 receptors in GCs of the antral follicle. Interestingly, NRG1 and ErbB3 were intensely co-localized in the mural and cumulus GCs and cumulus-oocyte complex of pre-ovulatory follicles in the estrus stage. CONCLUSIONS: The present studies suggest that gonadotropins-dependent NRG1-signaling in GCs may require the balance of the cytokines and chemokines expression and secretion, ultimately which may be supporting the follicular maturation and oocyte competence for ovulation and preventing follicular atresia.


Assuntos
Citocinas , Neuregulina-1 , Animais , Caspase 3 , Quimiocinas/genética , Quimiocinas/metabolismo , Citocinas/metabolismo , Feminino , Atresia Folicular , Gonadotropinas/farmacologia , Células da Granulosa/metabolismo , Neuregulina-1/genética , Neuregulina-1/metabolismo , Neuregulina-1/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Ratos , Fator de Necrose Tumoral alfa/metabolismo
8.
Reprod Sci ; 29(9): 2607-2619, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35585291

RESUMO

Uterine fibroids (UFs) (leiomyomas or myomas) are the most common clonal neoplasms of the uterus in women of reproductive age worldwide. UFs originate from myometrium consist of smooth muscle and fibroblast components, in addition to a substantial amount of fibrous extracellular matrix which all contribute to the pathogenetic process. Current treatments are primarily limited to surgical and interventional. Here, we have established a novel and promising organoid model from both normal and patient myometrial stem cells (MMSCs). MMSCs embedded in Matrigel in stem cell media swiftly formed organoids which successfully proliferate and self-organized into complex structures developing a sustainable organoid culture that maintain their capacity to differentiate into the different cell types recapitulating their tissue of origin and shows responsiveness to the reproductive hormones (estrogen and progesterone). Gene expression analysis and structural features indicated the early onset of uterine fibrosis led to the accumulation of extracellular matrix suggesting the potential use of this model in better understanding of the pathophysiology associated with UFs and inventing novel therapeutics for the treatment of UFs.


Assuntos
Leiomioma , Neoplasias Uterinas , Estrogênios/metabolismo , Feminino , Humanos , Leiomioma/metabolismo , Miométrio/metabolismo , Organoides/metabolismo , Organoides/patologia , Células-Tronco/metabolismo , Neoplasias Uterinas/metabolismo
9.
Front Immunol ; 13: 1082414, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36618355

RESUMO

Hemolysis is associated with many pathologies, including trauma, sepsis, hemorrhagic stroke, malaria, and genetic disorders such as sickle cell disease (SCD). When hemolysis occurs, free-heme drives vascular inflammation, resulting in oxidative tissue damage and cardiometabolic complications. A better understanding of heme clearance and detoxification is essential to preventing sustained tissue damage. Human induced pluripotent stem cell (hiPSC)-derived endothelial cells (hiPSC-ECs) provide a novel source of patient-specific cells and tissues for disease modeling, drug discovery, and regenerative therapeutics. Here we report the use of hiPSC-ECs to elucidate the role of miR-451a and let-7i-5p-loaded extracellular vesicles (EVs, such as exosomes) in the inflammatory response to free-heme as a model for heme-induced inflammation. We provide evidence of a significant correlation between miR-451a and let-7i-5p-loaded circulating exosomes in plasmodium-infected patients with reported clinical benchmarks of malaria-severity (e.g., Hemoglobin (Hb) levels, white blood cell counts). Additionally, we determined that exposure of Plasmodium falciparum (Pf) parasites to EVs, loaded with either miRNA, significantly reduces their counts in vitro. Using hiPSCs derived from individuals with wild-type Hb (HbAA) or homozygous sickle cell mutated Hb (HbSS) genotypes, we demonstrate that heme-treated hiPSC-ECs secreted inflammatory products (cytokines, chemokines and growth factors) into supporting media at concentrations that were similar to that reported in HbAA and HbSS serum. This inflammatory response was attenuated by exposure with miR-451a or let-7i-5p-loaded EVs. We also found a decrease in transcription of ICAM1 and P-Selectin, as well as the secretion of key inflammatory cytokines (e.g., CXCL10, TNF-α, and IFN-γ). Based on these findings, we propose a model in which increased levels of exosomal miR-451a and let-7i-5p in Plasmodium-infected individuals will attenuate inflammatory responses to free-heme and parasite-derived products. As a result, infected erythrocytes will less likely adhere to the endothelium, sequester in brain micro vessels, and reduce vaso-occlusive crises that exacerbate cerebral malaria.


Assuntos
Vesículas Extracelulares , Células-Tronco Pluripotentes Induzidas , Malária , MicroRNAs , Humanos , Citocinas/metabolismo , Células Endoteliais/metabolismo , Vesículas Extracelulares/metabolismo , Heme/metabolismo , Hemólise , Células-Tronco Pluripotentes Induzidas/metabolismo , Inflamação/metabolismo , MicroRNAs/metabolismo , Plasmodium
10.
Artigo em Inglês | MEDLINE | ID: mdl-34831759

RESUMO

Introduction: Adding developmental networks (DN) to grant-writing coaching can significantly enhance ESIs' research careers. Herein, we present study design, ESIs' characteristics and encountered challenges/lessons learned and their resolutions when deploying/implementing (a) NCR algorithm(s), (b) recruitment/retention and (c) implementing DN intervention. Methods: Nested Cluster Randomization (NCR) design governs this study implementation. The sample size is 220 ESIs intending to submit an NIH K, R, U, and/or Minority Supplement application(s). Primary outcome: intensity/sustainability of grant submission(s)/funding(s), measured by time to/between application(s). Outcome(s) analyses modes: summaries, Kaplan Meir and Cox proportional hazard models as a function of randomization groups and other predictors of outcomes. Results: In the present study, we recruited two cohorts of ESIs (N = 85): 39% African Americans, 18% Latinx, 18% Whites, 20% Asians and 6% Hawaiian/Pacific Islander/other ethnicities; 65% are women; 73% are assistant professors, 4% are Associate Professors and 23% are instructors/scientists/post-doctoral. Participants' disciplines: 32% basic/biomedical, 36% clinical/translational and 32% social/behavioral. Proposal(s) mechanisms: 61% research grants (R series), 31% career development (K series), 7% support of competitive research (SCORE) and 1% National Science Foundation applications. NCR did produce balance in the distribution of ESIs' demographics, sex at birth, ethnicity, professional appointments, background disciplines, and mechanism of sought funding. Lessons learned/challenges: NCR implementation was methodologically challenged during implementation by added constraints (e.g., assigning coaches to the same randomization arm of their participants as well as blinding them to ESIs' randomization group). Recruitment and retention were hampered by the COVID-19 pandemic and more progressive and innovative strategies were needed to heighten the visibility and outreach of this program. DN delivery was also affected by the pandemic and monitoring of ESIs' engagement and facilitation of communications interventions were needed. Resolution of these challenges effectively reconfigured NCR algorithms, recruitment/retention plans, and DN intervention delivery. We intend to recruit an additional 135 ESIs focusing on underrepresented scholars from RCMIs, CTSAs, and other programs. COVID-19 rendered this program 100% virtual, with recruitment/retention challenges and substantial disruption of ESIs' research. We may extend the grant writing period, coaching, and Mock Study Section support.


Assuntos
Pesquisa Biomédica , COVID-19 , Tutoria , Feminino , Humanos , Pandemias , SARS-CoV-2
11.
EClinicalMedicine ; 39: 101045, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34386757

RESUMO

BACKGROUND: Sickle cell anemia (SCA) is a severe monogenic disorder, caused by single nucleotide mutations in the hemoglobin (Hb) gene, that is prevalent in malaria endemic regions of the world. Sickle cell trait (SCT) individuals carry only one of the mutated alleles and were shown to be protected against malaria. However, defining the relative contribution of hematological, clinical, and environmental factors to the overall burden of malaria in individuals with hemoglobinopathies such as SCA has been challenging. METHODS: We hypothesized that hematological differences, clinical presentations, and self-reported bed net usage among Plasmodium-infected and uninfected individuals may govern overall malaria burden in individuals with sickle cell disease (SCD). We conducted a cross-sectional study in Ghana from 2014 to 2019 and described clinical presentations, hematological characteristics, and bed net use based on a comprehensive questionnaire. Hematological characteristics were compared using a parametric or nonparametric ANOVA, pending if data passed D'Agostino & Pearson normality test. When comparing only two Hb genotypes hematological characteristics a Mann-Whitney U-test were used. Logistic regressions and Chi-squared tests were used to compare questionnaire responses between Hb genotypes. All statistical significance was set at p < 0.05. FINDINGS: Multiple hematological parameters were significantly (p < 0.05) altered depending on sickle cell genotype and/or malaria status. When compared to other Hb genotypes, SCA individuals with or without malaria had significantly (p < 0.05) higher WBC and platelets counts and lower Hb levels. While the sickle cell genotype may affect malaria severity, SCT and SCA participants were found to significantly (p < 0.007) use bet nets more than HbAA participants. INTERPRETATIONS: Our findings can be utilized to enhance national guidelines for reducing the incidence of malaria especially among individuals with SCD, SCT protection and health disparities among hemoglobinopathies. FUNDING: This study was supported by the National Institute for Health.

12.
Artigo em Inglês | MEDLINE | ID: mdl-33800316

RESUMO

Inter-institutional collaborations and partnerships play fundamental roles in developing and diversifying the basic biomedical, behavioral, and clinical research enterprise at resource-limited, minority-serving institutions. In conjunction with the Research Centers in Minority Institutions (RCMI) Program National Conference in Bethesda, Maryland, in December 2019, a special workshop was convened to summarize current practices and to explore future strategies to strengthen and sustain inter-institutional collaborations and partnerships with research-intensive majority-serving institutions. Representative examples of current inter-institutional collaborations at RCMI grantee institutions are presented. Practical approaches used to leverage institutional resources through collaborations and partnerships within regional and national network programs are summarized. Challenges and opportunities related to such collaborations are provided.


Assuntos
Grupos Minoritários , Pesquisa , Humanos , Maryland
13.
Front Biosci (Landmark Ed) ; 26(4): 771-796, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33049693

RESUMO

Toll-like receptors (TLRs) are evolutionarily conserved molecules that detect exogenous and endogenous molecular patterns and trigger both the innate and adaptive immune systems to initiate a pathogen-specific immune response and eliminate the threat. However, sustained, or prolonged activation of the immune system disrupts immunological homeostasis and leads to chronic or acute inflammatory diseases. MicroRNAs (miRNAs) can intervene in the initiation and modulation of the complex immunoregulatory networks via regulating the expression of TLRs and multiple components of TLR-signaling pathways including signaling proteins, transcription factors, and cytokines. Moreover, the aberrant expression of TLRs can induce the expression of several miRNAs which in turn regulate the expression of TLR signaling components and TLR-induced cytokines. The present review aims to highlight the emerging roles of miRNA in the regulation of TLR signaling, the interaction between the miRNAs and TLRs, and their implication in inflammatory diseases.


Assuntos
MicroRNAs/fisiologia , Transdução de Sinais/fisiologia , Receptores Toll-Like/metabolismo , Animais , Humanos , Imunidade Inata
14.
Cells ; 9(6)2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32545544

RESUMO

Early-life exposure of the myometrium to endocrine-disrupting chemicals (EDCs) has been shown to increase the risk of uterine fibroid (UF) prevalence in adulthood. Vitamin D3 (VitD3) is a unique, natural compound that may reduce the risk of developing UFs. However, little is known about the role and molecular mechanism of VitD3 on exposed myometrial stem cells (MMSCs). We investigated the role of, and molecular mechanism behind, VitD3 action on DNA damage response (DDR) defects in rat MMSCs due to developmental exposure to diethylstilbestrol (DES), with the additional goal of understanding how VitD3 decreases the incidence of UFs later in life. Female newborn Eker rats were exposed to DES or a vehicle early in life; they were then sacrificed at 5 months of age (pro-fibroid stage) and subjected to myometrial Stro1+/CD44+ stem cell isolation. Several techniques were performed to determine the effect of VitD3 treatment on the DNA repair pathway in DES-exposed MMSCs (DES-MMSCs). Results showed that there was a significantly reduced expression of RAD50 and MRE11, key DNA repair proteins in DES-exposed myometrial tissues, compared to vehicle (VEH)-exposed tissues (p < 0.01). VitD3 treatment significantly decreased the DNA damage levels in DES-MMSCs. Concomitantly, the levels of key DNA damage repair members, including the MRN complex, increased in DES-MMSCs following treatment with VitD3 (p < 0.01). VitD3 acts on DNA repair via the MRN complex/ATM axis, restores the DNA repair signaling network, and enhances DDR. This study demonstrates, for the first time, that VitD3 treatment attenuated the DNA damage load in MMSCs exposed to DES and classic DNA damage inducers. Moreover, VitD3 targets primed MMSCs, suggesting a novel therapeutic approach for the prevention of UF development.


Assuntos
Colecalciferol/farmacologia , Dano ao DNA/fisiologia , Disruptores Endócrinos/metabolismo , Miométrio/metabolismo , Células-Tronco/citologia , Animais , Colecalciferol/metabolismo , Disruptores Endócrinos/farmacologia , Feminino , Leiomioma/metabolismo , Miométrio/crescimento & desenvolvimento , Ratos
15.
Gut ; 69(11): 1928-1938, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32111635

RESUMO

OBJECTIVE: Although perturbations in mitochondrial function and structure have been described in the intestinal epithelium of Crohn's disease and ulcerative colitis patients, the role of epithelial mitochondrial stress in the pathophysiology of inflammatory bowel diseases (IBD) is not well elucidated. Prohibitin 1 (PHB1), a major component protein of the inner mitochondrial membrane crucial for optimal respiratory chain assembly and function, is decreased during IBD. DESIGN: Male and female mice with inducible intestinal epithelial cell deletion of Phb1 (Phb1iΔIEC ) or Paneth cell-specific deletion of Phb1 (Phb1ΔPC ) and Phb1fl/fl control mice were housed up to 20 weeks to characterise the impact of PHB1 deletion on intestinal homeostasis. To suppress mitochondrial reactive oxygen species, a mitochondrial-targeted antioxidant, Mito-Tempo, was administered. To examine epithelial cell-intrinsic responses, intestinal enteroids were generated from crypts of Phb1iΔIEC or Phb1ΔPC mice. RESULTS: Phb1iΔIEC mice exhibited spontaneous ileal inflammation that was preceded by mitochondrial dysfunction in all IECs and early abnormalities in Paneth cells. Mito-Tempo ameliorated mitochondrial dysfunction, Paneth cell abnormalities and ileitis in Phb1iΔIEC ileum. Deletion of Phb1 specifically in Paneth cells (Phb1ΔPC ) was sufficient to cause ileitis. Intestinal enteroids generated from crypts of Phb1iΔIEC or Phb1ΔPC mice exhibited decreased viability and Paneth cell defects that were improved by Mito-Tempo. CONCLUSION: Our results identify Paneth cells as highly susceptible to mitochondrial dysfunction and central to the pathogenesis of ileitis, with translational implications for the subset of Crohn's disease patients exhibiting Paneth cell defects.


Assuntos
Ileíte/etiologia , Ileíte/patologia , Mitocôndrias/fisiologia , Celulas de Paneth/patologia , Proteínas Repressoras/fisiologia , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Compostos Organofosforados , Piperidinas , Proibitinas
16.
Cell Tissue Res ; 379(3): 561-576, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31897834

RESUMO

Defective mammalian spermatozoa are marked on their surface by proteolytic chaperone ubiquitin. To identify potential ubiquitinated substrates in the defective spermatozoa, we resolved bull sperm protein extracts on a two-dimensional gel and isolated a 64-65-kDa spot (p64) corresponding to one of the major ubiquitin-immunoreactive bands observed in the one-dimensional Western blots. Immune serum raised against this protein recognized a prominent, possibly glycosylated band/spot in the range of 55-68 kDa, consistent with the original spot used for immunization. Internal sequences obtained by Edman degradation of this spot matched the sequence of arylsulfatase A (ARSA), the sperm acrosomal enzyme thought to be important for fertility. By immunofluorescence, a prominent signal was detected on the acrosomal surface (boar and bull) and on the sperm tail principal piece (bull). A second immune serum raised against a synthetic peptide corresponding to an immunogenic internal sequence (GTGKSPRRTL) of the porcine ARSA also labeled sperm acrosome and principal piece. Both sera showed diminished immunoreactivity in the defective bull spermatozoa co-labeled with an anti-ubiquitin antibody. Western blotting and image-based flow cytometry (IBFC) confirmed a reduced ARSA immunoreactivity in the immotile sperm fraction rich in ubiquitinated spermatozoa. Larger than expected ARSA-immunoreactive bands were found in sperm protein extracts immunoprecipitated with anti-ubiquitin antibodies and affinity purified with matrix-bound, recombinant ubiquitin-binding UBA domain. These bands did not show the typical pattern of ARSA glycosylation but overlapped with bands preferentially binding the Lens culinaris agglutinin (LCA) lectin. By both epifluorescence microscopy and IBFC, the LCA binding was increased in the ubiquitinated spermatozoa with diminished ARSA immunoreactivity. ARSA was also found in the epididymal fluid suggesting that in addition to intrinsic ARSA expression in the testis, epididymal spermatozoa take up ARSA on their surface during the epididymal passage. We conclude that sperm surface ARSA is one of the ubiquitinated sperm surface glycoproteins in defective bull spermatozoa. Defective sperm surface thus differs from normal sperm surface by increased ubiquitination, reduced ARSA binding, and altered glycosylation.


Assuntos
Cerebrosídeo Sulfatase/metabolismo , Espermatozoides/metabolismo , Ubiquitina/biossíntese , Animais , Bovinos , Imuno-Histoquímica , Masculino , Microscopia de Fluorescência , Espermatozoides/enzimologia , Espermatozoides/patologia , Sus scrofa , Ubiquitina/metabolismo
17.
J Cell Physiol ; 234(5): 6298-6312, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30259980

RESUMO

Endometriosis is a chronic gynecological inflammatory disorder in which immune system dysregulation is thought to play a role in its initiation and progression. Due to altered sex steroid receptor concentrations and other signaling defects, eutopic endometriotic tissues have an attenuated response to progesterone. This progesterone-resistance contributes to lesion survival, proliferation, pain, and infertility. The current agency-approved hormonal therapies, including synthetic progestins, GnRH agonists, and danazol are often of limited efficacy and counterproductive to fertility and cause systemic side effects due to suppression of endogenous steroid hormone levels. In the current study, we examined the effects of curcumin (CUR, diferuloylmethane), which has long been used as an anti-inflammatory folk medicine in Asian countries for this condition. The basal levels of proinflammatory and proangiogenic chemokines and cytokines expression were higher in primary cultures of stromal cells derived from eutopic endometrium of endometriosis (EESC) subjects compared with normal endometrial stromal cells (NESC). The treatment of EESC and NESC with CUR significantly and dose-dependently reduced chemokine and cytokine secretion over the time course. Notably, CUR treatment significantly decreased phosphorylation of the IKKα/ß, NF-κB, STAT3, and JNK signaling pathways under these experimental conditions. Taken together, our findings suggest that CUR has therapeutic potential to abrogate aberrant activation of chemokines and cytokines, and IKKα/ß, NF-κB, STAT3, and JNK signaling pathways to reduce inflammation associated with endometriosis.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Curcumina/farmacologia , Endometriose/patologia , Endométrio/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Células Estromais/efeitos dos fármacos , Citocinas/efeitos dos fármacos , Citocinas/imunologia , Citocinas/metabolismo , Endometriose/imunologia , Endometriose/metabolismo , Endométrio/imunologia , Endométrio/patologia , Feminino , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Células Estromais/imunologia , Células Estromais/patologia
18.
Endocrinology ; 158(10): 3647-3660, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28938399

RESUMO

Mammalian ovarian follicular development and maturation of an oocyte competent to be fertilized and develop into an embryo depends on tightly regulated, spatiotemporally orchestrated crosstalk among cell death, survival, and differentiation signals through extra- and intraovarian signals, as well as on a permissive ovarian follicular microenvironment. Neuregulin-1 (NRG1) is a member of the epidermal growth factor-like factor family that mediates its effects by binding to a member of the erythroblastoma (ErbB) family. Our experimental results suggest gonadotropins promote differential expression of NRG1 and erbB receptors in granulosa cells (GCs), and NRG1 in theca cells during follicular development, and promote NRG1 secretions in the follicular fluid (FF) of rat ovaries. During the estrous cycle of rat, NRG1 and erbB receptors are differentially expressed in GCs and correlate positively with serum gonadotropins and steroid hormones. Moreover, in vitro experimental studies suggest that the protein kinase C inhibitor staurosporine (STS) causes the physical destruction of GCs by the activation of caspase-3. Exogenous NRG1 treatment of GCs delayed onset of STS-induced apoptosis and inhibited cleaved caspase-3 expressions. Moreover, exogenous NRG1 treatment of GCs alters STS-induced death by maintaining the expression of ErbB2, ErbB3, pAkt, Bcl2, and BclxL proteins. Taken together, these studies demonstrate that NRG1 is gonadotropin dependent, differentially regulated in GCs and theca cells, and secreted in ovarian FF as an intracellular survival factor that may govern follicular maturation.


Assuntos
Apoptose/efeitos dos fármacos , Sobrevivência Celular , Receptores ErbB/efeitos dos fármacos , Gonadotropinas/farmacologia , Células da Granulosa/efeitos dos fármacos , Neuregulina-1/efeitos dos fármacos , Animais , Caspase 3/efeitos dos fármacos , Caspase 3/metabolismo , Receptores ErbB/metabolismo , Feminino , Líquido Folicular , Células da Granulosa/metabolismo , Técnicas In Vitro , Neuregulina-1/metabolismo , Neuregulina-1/farmacologia , Folículo Ovariano/crescimento & desenvolvimento , Ovário/citologia , Ovário/efeitos dos fármacos , Ovário/metabolismo , Fosfoproteínas/efeitos dos fármacos , Fosfoproteínas/metabolismo , Proteína Quinase C/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor ErbB-2/efeitos dos fármacos , Receptor ErbB-2/metabolismo , Receptor ErbB-3/efeitos dos fármacos , Receptor ErbB-3/metabolismo , Estaurosporina/farmacologia , Células Tecais , Proteína bcl-X/efeitos dos fármacos , Proteína bcl-X/metabolismo
19.
J Mol Endocrinol ; 56(4): 325-36, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27044659

RESUMO

Published results from our laboratory identified prohibitin (PHB), a gene product expressed in granulosa cells (GCs) that progressively increases during follicle maturation. Our current in vitro studies demonstrate that follicle-stimulating hormone (FSH) stimulates Phb expression in rat primary GCs. The FSH-dependent expression of PHB was primarily localized within mitochondria, and positively correlates with the morphological changes in GCs organelles, and synthesis and secretions of estradiol (E2) and progesterone (P4). In order to confirm that PHB plays a regulatory role in rat GC differentiation, endogenous PHB-knockdown studies were carried out in undifferentiated GCs using adenoviral (Ad)-mediated RNA interference methodology. Knockdown of PHB in GCs resulted in the suppression of the key steroidogenic enzymes including steroidogenic acute regulatory protein (StAR), p450 cholesterol side-chain cleavage enzyme (p450scc), 3ß-hydroxysteroid dehydrogenase (3ß-HSD), and aromatase (Cyp19a1); and decreased E2 and P4 synthesis and secretions in the presence of FSH stimulation. Furthermore, these experimental studies also provided direct evidence that PHB within the mitochondrial fraction in GCs is phosphorylated at residues Y249, T258, and Y259 in response to FSH stimulation. The observed levels of phosphorylation of PHB at Y249, T258, and Y259 were significantly low in GCs in the absence of FSH stimulation. In addition, during GC differentiation FSH-induced expression of phospho-PHB (pPHB) requires the activation of MEK1-ERK1/2 signaling pathway. Taken together, these studies provide new evidence supporting FSH-dependent PHB/pPHB upregulation in GCs is required to sustain the differentiated state of GCs.


Assuntos
Diferenciação Celular , Hormônio Foliculoestimulante/metabolismo , Células da Granulosa/citologia , Células da Granulosa/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais , Animais , Diferenciação Celular/genética , Feminino , Hormônio Foliculoestimulante/farmacologia , Técnicas de Silenciamento de Genes , Gonadotropinas/farmacologia , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/ultraestrutura , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosforilação , Proibitinas , Ratos , Proteínas Repressoras/genética , Transdução de Sinais/genética , Esteroides/biossíntese , Testosterona/metabolismo , Testosterona/farmacologia
20.
Stem Cells Transl Med ; 5(4): 440-50, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26933040

RESUMO

UNLABELLED: Cell secretion is an important mechanism for stem cell-based therapeutic angiogenesis, along with cell differentiation to vascular endothelial cells or smooth muscle cells. Cell-released microvesicles (MVs) have been recently implicated to play an essential role in intercellular communication. The purpose of this study was to explore the potential effects of stem cell-released MVs in proangiogenic therapy. We observed for the first time that MVs were released from adipose-derived stem cells (ASCs) and were able to increase the migration and tube formation of human umbilical vein endothelial cells (HUVECs). Endothelial differentiation medium (EDM) preconditioning of ASCs upregulated the release of MVs and enhanced the angiogenic effect of the released MVs in vitro. RNA analysis revealed that microRNA was enriched in ASC-released MVs and that the level of microRNA-31 (miR-31) in MVs was notably elevated upon EDM-preconditioning of MV-donor ASCs. Further studies exhibited that miR-31 in MVs contributed to the migration and tube formation of HUVECs, microvessel outgrowth of mouse aortic rings, and vascular formation of mouse Matrigel plugs. Moreover, factor-inhibiting HIF-1, an antiangiogenic gene, was identified as the target of miR-31 in HUVECs. Our findings provide the first evidence that MVs from ASCs, particularly from EDM-preconditioned ASCs, promote angiogenesis and the delivery of miR-31 may contribute the proangiogenic effect. SIGNIFICANCE: This study provides the evidence that microvesicles (MVs) from adipose-derived stem cells (ASCs), particularly from endothelial differentiation medium (EDM)-preconditioned ASCs, promote angiogenesis. An underlying mechanism of the proangiogenesis may be the delivery of microRNA-31 via MVs from ASCs to vascular endothelial cells in which factor-inhibiting HIF-1 is targeted and suppressed. The study findings reveal the role of MVs in mediating ASC-induced angiogenesis and suggest a potential MV-based angiogenic therapy for ischemic diseases.


Assuntos
Tecido Adiposo/citologia , Células-Tronco Adultas/fisiologia , MicroRNAs/metabolismo , Neovascularização Fisiológica , Tecido Adiposo/metabolismo , Células-Tronco Adultas/citologia , Animais , Movimento Celular/genética , Micropartículas Derivadas de Células/metabolismo , Micropartículas Derivadas de Células/fisiologia , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , MicroRNAs/genética , Microvasos/fisiologia , Neovascularização Fisiológica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...